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Zusammenfassung

Bohmsche Mechanik [4, 8, 19, 20, 22, 26] ist eine Quantentheorie über Teilchen
in Bewegung (d.h. über Teilchenbahnen), die empirisch äquivalent zur orthodo-
xen Quantenmechanik ist, wenn immer letztere eindeutige Vorhersagen macht
[20]. Da auch die Newtonsche Mechanik eine Theorie über Teilchenbahnen ist,
lässt sich die Frage nach dem klassischen Limes in der Bohmschen Mechanik
somit besonders einfach und klar formulieren: Wann sehen Bohmsche Bahnen
wie Newtonsche Bahnen aus? Als ersten Schritt hin zu einer umfassenderen Ant-
wort auf diese Frage zeigen wir im ersten Teil dieser Arbeit, dass die Bohmschen
Bahnen, die zu semiklassischen Wellenpaketen (wie sie in [25] von Hagedorn de-
finiert wurden) gehören, in einem angemessenen Skalenlimes zu der klassischen
Bahn konvergieren, auf der sich der Ortserwartungswert des Wellenpakets bewegt
(Kapitel 2).
Es gibt eine weitere Situation wo wir bereits wissen, dass sich Bohmsche Bah-
nen klassisch verhalten: Ein Teilchen, das an einem kurzreichweitigen Potential
gestreut wird, bewegt sich asymptotisch frei, d.h. seine Geschwindigkeit wird für
t → ∞ konstant [34]. Im zweiten Teil dieser Arbeit (Kapitel 3) erweitern wir
dieses Resultat auf den Fall von N nicht wechselwirkenden, möglicherweise ver-
schränkten Teilchen (wie z.B. in einem EPR-Experiment). Vor allen Dingen aber
benutzten wir diese Erweiterung, um eine der grundlegenden Fragen der Streu-
theorie zu beantworten: Wie kann man die Wahrscheinlichkeit bestimmen, dass
Teilchen in einem gegebenen Raumwinkel detektiert werden?
In orthodoxer Quantenmechanik werden diese Wahrscheinlichkeiten mit Hilfe
der S-Matrix-Theorie berechnet, wobei die tiefere Begründung der S-Matrix-
Theorie allerdings ein in der Literatur viel diskutiertes Problem ist. Wir be-
sprechen frühere Versuche, die Detektionswahrscheinlichkeiten aus grundlegen-
den Prinzipien abzuleiten, und begründen, inwiefern sich der Mehrteilchenfall
vom Einteilchenfall so stark unterscheidet, dass er neuer Methoden bedarf. Mit
Hilfe des asymptotisch klassischen Verhaltens der Bohmschen Bahnen zeigen wir
schließlich, dass die Bohmschen Detektionswahrscheinlichkeiten zum üblichen S-
Matrix-Ausdruck konvergieren wenn der Abstand zwischen den Detektoren und
dem Streuzentrum unendlich groß wird.
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Chapter 1

Introduction

1.1 A very brief overview

This work consists of two parts. In the first we are concerned with the classical limit
of Bohmian mechanics per se: We prove a result about the Bohmian trajectories of
semiclassical wave packets. In the second we apply a special instance of the classical
limit to many particle scattering theory: We derive the detection statistics of N non-
interacting, possibly entangled particles from first principles.

The key question of the classical limit is: How does the classical world of everyday’s
experience as it is described by Newtonian mechanics emerge out of quantum mechanics?
Since orthodox quantum mechanics contains no particle trajectories while Newtonian me-
chanics is solely about particle trajectories, to answer this question one usually needs to
either introduce in classical mechanics an observer and a commutative algebra of observ-
ables or to restrict the emergence of classical behavior to the time development of phase
space densities.

Bohmian mechanics [4, 8, 19, 20, 22, 26], however, is a theory of particles in motion (i.e.
a theory of particle trajectories) that is experimentally equivalent to quantum mechanics
whenever the latter makes unambiguous predictions [20]. Thus, using Bohmian mechanics
the question of the classical limit becomes as simple as it could possibly be: Under
which circumstances are the trajectories of the particles of a system (close to) Newtonian
trajectories? As a first step towards an answer to this question we show that in an
appropriate scaling limit the trajectories associated with semiclassical wave packets (as
defined by Hagedorn in [25]) tend to the classical trajectory tracked by the mean position
of the wave packet (Chapter 2).

There is a second situation where we already know that Bohmian trajectories look like
classical ones: Whenever a particle is scattered by a short range potential it becomes free
asymptotically in the sense that its Bohmian velocity becomes constant as t → ∞ [34].
In Chapter 3 we extend this result to the case of N non-interacting, possibly entangled
particles (like, for example, in an EPR experiment). More importantly, we use this
extension to answer one of the fundamental questions of scattering theory: How can one
determine the probability that particles are detected in a given solid angle?

1



2 CHAPTER 1. INTRODUCTION

In orthodox quantum mechanics this is computed from S-matrix theory. The justi-
fication of S-matrix theory from first principles, however, is a recurrent problem in the
literature. We discuss earlier attempts to derive the scattering probability from first
principles and explain how many particle potential scattering is so different from one par-
ticle potential scattering that it calls for new methods. With the help of the asymptotic
classicality of the Bohmian trajectories we prove that the Bohmian detection probability
converges to the usual S-matrix expression whenever the distance between detectors and
scattering potential tends to infinity.

We give a more detailed overview at the beginning of Chapter 2 and Chapter 3 each.

1.2 Bohmian mechanics

In Bohmian mechanics [4, 8, 19, 20, 22, 26] the state ofN spinless, non-relativistic particles
is described by their (normalized) quantum mechanical wave function ψ(x, t) ∈ L2(R3N),
where x = (x1, . . . , xN) ∈ R3N , t ∈ R, and by their actual configuration (positions)
X = (X1, . . . , XN) ∈ R3N . The wave function evolves according to the Schrödinger
equation

i~
∂

∂t
ψ(x, t) = Hψ(x, t) (1.1)

and governs the motion of the particle by (l = 1, . . . , N)

d

dt
Xψ

l (x0, t) = vψl
(
Xψ(x0, t), t

)
=:

~
ml

Im

(
∇lψ(Xψ(x0, t), t)

ψ(Xψ(x0, t), t)

)
. (1.2)

Here x0 is the particles’ configuration at time t = 0, ml is the mass of the lth particle and
∇l is the gradient with respect to xl. In (1.1) H is the usual non-relativistic Schrödinger
Hamiltonian

H = −
N∑
l=1

~2

2ml

∆l + V (x) =: H0 + V (x) (1.3)

with the non-relativistic real valued potential1 V .

The dynamical system defined by Bohmian mechanics is naturally associated with a
family of finite measures Pψ(·,t) given by the densities ρψ(·,t)(x) := |ψ(x, t)|2 on configura-
tion space R3N . If at time t = 0 we start with a random distribution on the configurations
x of the system with density ρ0 = ρψ(·,0), for any other time t (1.2) transports this to a
distribution with density ρt = ρψ(·,t). This property is called equivariance. More precisely,
let Φψ

t2,t1 : R3N → R3N be the flow map of (1.2), i.e. Xψ(x0, t2) = Φψ
t2,t1

(
Xψ(x0, t1)

)
.

Then the measure Pψ(·,0) is transported to Pψ(·,0)
t := Pψ(·,0) ·

(
Φψ
t,0

)−1
= Pψ(·,0) · Φψ

0,t. We

say that the functional ψ(·, t) 7→ Pψ(·,t) from wave functions to the finite measures Pψ(·,t)

is equivariant if for all t ∈ R

Pψ(·,0)
t = Pψ(·,0) · Φψ

0,t = Pψ(·,t) . (1.4)

1More rigorously: H is a self-adjoint extension ofH|C∞0 (Ω) = −
N∑
l=1

~2

2ml
∆l+V (with V : Ω ⊂ R3N → R)

on the Hilbert space L2(Ω) with domain D(H).



1.2. BOHMIAN MECHANICS 3

On the family of measures Pψ(·,t) we bestow the role usually played by the stationary2

“equilibrium measure”: We call Pψ(·,t) the quantum equilibrium measure and say that a
property is typical, resp. holds for typical initial configurations x0, if it holds for Pψ(·,0)-
almost all x0 ∈ R3N . By equivariance this notion of typicality is time independent. For
an extensive treatment of quantum equilibrium and how it entails the usual quantum
measurement formalism (including the collapse of the wave function) see [19, 20].

Since the Bohmian velocity field vψl = ~
ml

Im
(
∇lψ
ψ

)
becomes obviously ill defined at the

nodes of the wave function ψ, one might wonder whether the dynamic system of Bohmian
mechanics is well defined. However, for a wide class of (sufficiently regular) potentials
V and initial wave functions ψ Pψ-almost sure global existence of Bohmian mechanics
was proved in [5] and [39]. In particular, typical Bohmian trajectories do not run into
the nodes of the wave function. Both our settings below (Chapters 2 and 3) fall into the
scope of Corollary 3.2 in [5] resp. Corollary 4 in [39].

Proposition 1. Let V ∈ C∞(Ω,R) with Ω ⊂ R3N such that R3 \ Ω consists of at most

finitely many points (i.e. the real valued potential V has got at most finitely many singu-

larities). Further let V = V1 + V2 where V1 is bounded below and V2 is H0-bounded with

relative bound a < 1. Finally, assume that the initial wave function ψ is a C∞-vector

of H, ψ ∈ C∞(H) :=
∞⋂
n=1

D(Hn), and is normalized. Then there exists a unique global

solution of (1.2) for Pψ-almost all initial configurations x0 ∈ R3N .

For a proof see Corollary 3.2 in [5] resp. Corollary 4 in [39]. In fact they are more
general than Proposition 1 (they allow for more general singularities of the potential and
are formulated in terms of quadratic forms instead of operators). The set of admissible
initial wave functions C∞(H) is dense in L2(Ω) and invariant under the time evolution
e−iHt. Therefore it is a core, i.e. a domain of essential self adjointness of H. Examples for
C∞-vectors are eigenfunctions and wave functions ψ ∈ Ran(P[E1,E2]) of “finite energy”,
where P[E1,E2] denotes the spectral projection of H to the finite energy interval [E1, E2].
Since Ω and R3N differ at most by a set of Lesbegue- and thus Pψ-measure zero we shall
in the following no longer distinguish between them.

2Since in most cases the velocity field defined in (1.2) will be explicitly time dependent one cannot
expect to find a stationary measure.





Chapter 2

Trajectories of Semiclassical Wave

Packets

Under which circumstances are the Bohmian trajectories of the particles of a system (close
to) Newtonian trajectories? In this chapter we study this question in the case of a system
with three degrees of freedom only, so Schrödinger’s equation (1.1) and the Bohmian
equation of motion (1.2) read

i~
∂

∂t
ψ(x, t) = Hψ(x, t) = − ~2

2m
4ψ(x, t) + V (x)ψ(x, t),

d

dt
Xψ(x0, t) = vψ

(
Xψ(x0, t), t

)
=

~
m

Im

(
∇ψ(Xψ(x0, t), t)

ψ(Xψ(x0, t), t)

)
, Xψ(x0, 0) = x0

with x and Xψ in R3. Here one should not so much think of a single particle but rather
of a macroscopic body in an external potential V whose center of mass coordinates x
can be dynamically decoupled from its inner degrees of freedom1. Only for simplicity we
henceforth call Xψ and ψ the position respectively the wavefunction of a “particle”.

Usually, physicists consider classical behavior of a quantum mechanical system as
ensured by the limit ~ → 0, meaning by this

~ � A0 ,

where A0 is some characteristic action of the corresponding classical motion (see, e.g., [7,
30, 36]). We prefer, however, to use another, equivalent standard condition of classicality
which involves the length scales of the motion (see, e.g., [29]): Suppose the de Broglie wave
length λ is small with respect to the characteristic dimension L determined by the scale
of variation of the potential V . Then on the macroscopic scale given by L the behavior
of the system should be close to the behavior of a classical system in the same potential
V . This is very reminiscent of how geometrical optics can be deduced from wave optics.
We regard this condition, i.e.,

λ� L ,

1See e.g. [3], Section 3, for conditions under which this is possible.

5



6 CHAPTER 2. TRAJECTORIES OF SEMICLASSICAL WAVE PACKETS

as the most natural condition of classicality since it relates in a completely transparent
way a property of the state, namely its de Broglie wave length λ, and a property of the
dynamics, namely the scale of variation of the potential L (cf. [3]).

It is a priori not clear how the scale of variation L of a given potential V should be
defined. One way to circumvent this problem is to consider an arbitrary potential V and
to rescale it as V ε(x) := V (εx). Then the limit ε → 0 corresponds to the limit of slow
variation of V ε, no matter exactly how the scale of variation is defined.

Since we want to compare quantum and classical dynamics on the scale the poten-
tial lives on, we change from microscopic coordinates (x, t) to macroscopic coordinates
(x′, t′) = (εx, εt). Then the time-dependent Schrödinger equation becomes (ψε(x′, t′) :=

ε−
3
2ψ(x′

ε
, t

′

ε
) where ε−

3
2 is just a normalization factor)

iε~
∂

∂t′
ψε(x′, t′) = Hεψε(x′, t′) = −ε

2~2

2m
4′ ψε(x′, t′) + V (x′)ψε(x′, t′) (2.1)

while the Bohmian equation of motion reads

d

dt′
X ′ψε(x′

0, t
′) = vψ

ε(
X ′ψε(x′

0, t
′), t′

)
=
ε~
m

Im

(
∇′ψε(X ′ψε(x′

0, t
′), t′)

ψε(X ′ψε(x′
0, t

′), t′)

)
,

X ′ψε(x′
0, 0) = x′

0 .

(2.2)

Hence, in macroscopic coordinates, the limit ε → 0 is mathematically equivalent to the
limit ~ → 0. From now on we use natural units ~ = m = 1. Moreover, since we shall
stick to the macroscopic scale, we change the notation: For the remainder of this chapter
(x, t) denotes the macroscopic (and no longer the microscopic) coordinates. For ease of
notation we also write X instead of Xψε .

We shall study the scaling limit ε → 0 of the Bohmian trajectories associated with a
special class of initial wave functions Φε

k(a(0),η(0), ·) in a sufficiently smooth potential
V . The Φε

ks are the semiclassical wave packets defined by Hagedorn in [24, 25]. Roughly
speaking they are ”narrow” non-isotropic three dimensional generalized Hermite func-
tions (generalized Hermite polynomials of order k := k1 + k2 + k3, k ∈ N3 multiplied by
a Gaussian wave packet) centered around some classical phase space point (a(0),η(0)).
”Narrow” means that their standard deviation is of order

√
ε both in position and mo-

mentum. Moreover, Hagedorn [24, 25] showed that they give a good approximation to
the Schrödinger time evolution in the sense that, up to an error of order

√
ε in L2-norm,

the solution ψεk(x, t) of (2.1) with initial data ψεk(x, 0) = Φε
k(a(0),η(0),x) is given by

Φε
k(a(t),η(t),x). Here (a(t),η(t)) is the corresponding classical phase space trajectory,

that is the solution of the Newtonian law of motion with initial data (a(0),η(0)) (see
subsection 2.1.2).

For this class of initial wave functions we show that for ε → 0 Pψεk(·,0)-almost all
Bohmian trajectories stay arbitrarily close to the corresponding classical trajectory a(t)
and that the rate of convergence is of order

√
ε: For all T > 0 and γ > 0 there exists

some R <∞ such that

Pψεk(·,0)({x0 ∈ R3 | max
t∈[0,T ]

|X(x0, t)− a(t)| ≤ R
√
ε}) > 1− γ
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for all ε small enough (cf. Theorem 1).

At first glance this looks like an easy corollary to Hagedorn’s L2-results. After all, they
imply that for every time t ∈ [0, T ] not just the main support of Φε

k(a(t),η(t),x) but also
that of ψεk(x, t) lies in a ball with radius ∼

√
ε centered around the classical position a(t)

at that time. But beware: This only implies that for ε small enough the set of initial
positions x0 of Bohmian trajectories X(x0, t) that do not deviate more than order

√
ε

from the classical trajectory a(t) at some arbitrary but fixed time t ∈ [0, T ] has (nearly)
full Pψεk(·,0)-measure. It does not imply that the set of initial positions x0 of Bohmian
trajectories X(x0, t) that stay

√
ε-close to a(t) for all times t ∈ [0, T ] has (nearly) full

Pψεk(·,0)-measure. There is still the possibility that the Bohmian trajectories “take turns”
to escape the proximity of the classical trajectory a(t): While for every time t ∈ [0, T ]
most of the Bohmian trajectories are close to the classical trajectory a(t), nevertheless
(nearly) every Bohmian trajectory may leave the vicinity of a(t) at some time t ∈ [0, T ]
(see Figure 2.1).

a(t)

∼
√

ε

X(x0, t)

X(x′

0
, t)

Figure 2.1: What might go wrong.

So we need more controll over the Bohmian trajectories X(x0, t) than available from
L2-results. In view of (2.2) this can be achieved by evaluating the wave function ψεk and
its gradient pointwise. Thus the main technical result of this work is Lemma 1: ψεk(x, t)
and Φε

k(a(t),η(t), ·) are close not only in L2-norm but also pointwise and the same is true
for their gradients.

For its proof we use a Gagliardo-Nirenberg inequality (i.e. a Sobolev-type inequality)
that allows us to estimate the supremum norm of (∇x)ψ

ε
k − (∇x)Φ

ε
k by its L2-norm and

the L2-norm of its second derivatives. The main difficulty then is to compute the lat-
ter. In particular, we have to commute differentiation (respectively p = −iε∇) with

the Schrödinger time evolution e−
i
ε
Hεt without loosing too many orders of ε. This is

further complicated by the fact that ψεk − Φε
k carries a rapidly varying phase factor of

the form e
i
ε
〈η,x−a〉 which blows up the estimates for the derivatives. To remedy this we

use Gagliardo-Nirenberg not directly on ψεk − Φε
k (resp. ∇xψ

ε
k − ∇xΦ

ε
k) but rather on
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e−
i
ε
〈η,x−a〉 (ψεk − Φε

k). This, however, means that in the end we even have to compute2

the higher order terms ‖Dαe−
i
ε
〈η,x−a〉 (ψεk − Φε

k) ‖2 = ε−|α|‖(p− η)α (ψεk − Φε
k) ‖2 instead

of ‖Dα (ψεk − Φε
k) ‖2 = ε−|α|‖pα (ψεk − Φε

k) ‖2 (see subsection 2.4.3).

The remainder of this chapter is organized as follows. In section 2.1 we give the
mathematical setup: We briefly recount the different dynamics (classical and quantum)
we want to compare (subsection 2.1.1) and introduce Hagedorn’s wave packets (subsection
2.1.2). Section 2.2 contains our results about the classical behavior of the Bohmian
trajectories and Lemma 1 about the pointwise closeness of ψεk(x, t) and Φε

k(a(t),η(t), ·). In
section 2.3 we have collected some remarks and a short outlook on possible generalizations
of our results. Last but not least we give the proofs (section 2.4).

2.1 Mathematical framework

2.1.1 Dynamics

In this subsection we collect the different kinds of particle dynamics we wish to compare.
We look at particle motion in a macroscopic potential V : R3 → R, which we always
assume to be in C∞(R3). Since we will habitually need to restrict the growth of the
potential and its derivatives, we give the following

Definition 1. We say that V ∈ C∞(R3,R) is in GV if for all multi-indices α ∈ N3

max
|α|≤4

‖DαV ‖∞ ≤ CV (2.3)

for some CV < ∞ and if multiplication by V maps the Schwartz space S(R3) into itself,

i.e. if V f ∈ S(R3) for all f ∈ S(R3). Here Dα denotes the (weak) derivative ∂α1
x1
∂α2
x2
∂α3
x3

.

Remark 1. The (quite mild) requirement that V maps S into itself is needed to get

Pψ-almost sure global existence of Bohmian mechanics [5, 39] for initial wave functions

ψ ∈ S (c.f. the beginning of the proof of Theorem 1). The boundedness of V and its

derivatives will be needed in the proof of the pointwise closeness of (∇)ψεk and (∇)Φε
k

when we commute p with e−
i
ε
Hεt.

The classical dynamics is given by Newtonian mechanics, so the classical state of a
particle at the macroscopic time t is given by its classical position and velocity at that
time, which we denote by (a(t),η(t)). For any given initial value (a(0), η(0)) it is the
(unique global) solution3 of the usual classical equations of motion:

ȧ(t) = η(t) ,

η̇(t) = −∇V (a(t)) .
(2.4)

2We use the usual multi-index notation, Dα = ∂α1
1 ∂α2

2 ∂α3
3 .

3Since max
|α|=2

‖DαV ‖∞ ≤ CV , global existence and uniqueness of solutions to (2.4) is a standard result.
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The quantum dynamics is given by Bohmian mechanics, so the particle’s quantum me-
chanical state is given by its quantum mechanical position and wave function,
(X(x0, t), ψ(·, t)) (cf. section 1.2). In macroscopic coordinates and natural units
Schrödinger’s equation and the Bohmian equation of motion read respectively (cf. the
beginning of this chapter)

iε
∂

∂t
ψ(x, t) = Hε ψ(x, t) =

(
−ε

2

2
4+ V (x)

)
ψ(x, t) (2.1)

and

d

dt
X(x0, t) = vψ(X(x0, t), t) = εIm

(
∇ψ(X(x0, t), t)

ψ(X(x0, t), t)

)
, X(x0, 0) = x0 . (2.2)

By U ε(t) we denote the unitary propagator generated by Hε:

d

dt
U ε(t)|t=0 = − i

ε
Hε (2.5)

To mediate between classical and quantum dynamics we follow Hagedorn [25] and
use a second, “semiclassical” time evolution for the wave function, namely a Schrödinger
evolution with truncated potential. To this end we Taylor-expand the potential V and
introduce the following abbreviations.

Definition 2. For any l ≤ m ∈ N, V ∈ Cm(R3) define

Vm (x,a) := V (x)−
m−1∑
|α|=0

1

α!
(DαV ) (a)(x− a)α (2.6)

and

Vl,m (x,a) := Vl (x,a)− Vm+1 (x,a) =
m∑

|α|=l

1

α!
(DαV ) (a)(x− a)α. (2.7)

Then the truncated, time dependent (quadratic) Hamiltonian

H̃ε(t) := H̃ε(a(t)) := −ε
2

2
4+ V0,2 (x,a(t)) (2.8)

is the generator of a second unique unitary propagator, which we denote by Ũ ε(t, s):

d

dt
Ũ ε(t, s)|t=s = − i

ε
H̃ε(s) . (2.9)

For a proof see [25].
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2.1.2 Hagedorn’s wave packets

In this subsection we recount the definition and the basic properties of Hagedorn’s (n-
dimensional) wave packets [24, 25]. They are semiclassical wave packets that form an
orthonormal basis (ONB) of L2(Rn) and come endowed with their very own time evolution,
which is such that their mean position and momentum track a classical trajectory in phase
space while their standard deviation is of order

√
ε both in position and momentum. In

fact we shall see that this time evolution is just that given by the truncated Hamiltonian
H̃ε.

Like the eigenfunctions of the n-dimensional harmonic oscillator Hagedorn’s wave
packets can be constructed with the help of raising and lowering operators [25].

For this let A0, B0 ∈ Cn×n such that4

At0B0 −Bt
0A0 = 0 ,

A∗
0B0 +B∗

0A0 = 21
(2.10)

and let (A(t) , B(t)) ∈ Cn×n × Cn×n be the solution5 of (V (2) denotes the Hessian of V )

Ȧ(t) = iB(t) ,

Ḃ(t) = iV (2)(a(t))A(t) ,
(2.11)

with initial data (A(0), B(0)) = (A0, B0). Then also A(t) and B(t) fulfill (2.10). Moreover,
(2.10) implies that

A and B are invertible ,

BA−1 and AB−1 are symmetric ,

Re(BA−1) = (AA∗)−1 and Re(AB−1) = (BB∗)−1 .

(2.12)

For a proof see [25].

Next define (formal) vectors of lowering resp. raising operators acting on Schwartz
space S(Rn):

A(A,B, ε,a,η) :=
1√
2ε

[
Bt(x− a) + iAt(p− η)

]
A∗(A,B, ε,a,η) :=

1√
2ε

[B∗(x− a)− iA∗(p− η)]
(2.13)

They fulfill the commutator relations (j, l ∈ {1 , . . . , n})

[Aj, Al] =
[
A∗
j , A

∗
l

]
= 0 ,

[Aj, A
∗
l ] = δjl .

Here p = −iε∇ is the momentum and x is the (macroscopical) position operator.

4At is the transposed of A, A∗ its adjoint and Ā its complex conjugate.
5Since max

|α|=3
‖DαV ‖∞ ≤ CV , such a solution exists and is unique.
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Remark 2. Note that A and A∗ are only formal vectors. In particular, A∗ is the vector

consisting of the adjoint components of A; that is why in the definition of A∗ we find A∗

and B∗ instead of the probably expected B̄ resp. Ā.

Then Hagedorn’s wave packets are given by

Definition 3 (Hagedorn’s wave packets). Let ε > 0, k ∈ Nn and let a(t), η(t) be solutions

of (2.4) and A(t), B(t) solutions of (2.11) with initial data A0, B0 fulfilling (2.10). Define

Φε
k(x, t) := Φk(A(t), B(t), ε,a(t),η(t),x) :=

1√
k!
A∗(A,B, ε,a,η)kΦε

0(x, t) (2.14)

where the ground state Φε
0 is given by

Φε
0(x, t) := Φ0 (A(t), B(t), ε,a(t),η(t),x)

:= e
i
ε
S(t) (πε)−

n
4√

det(A)
exp

[
− 1

2ε

〈
(x− a), BA−1(x− a)

〉
+
i

ε
〈η, (x− a)〉

]
,

(2.15)

S(t) =
t∫

0

[
1
2
η2(s)− V (a(s))

]
ds denotes the usual classical action and 〈·, ·〉 is the canonical

scalar product on Cn.

Since it appears only as a global (if time dependent) phase factor we choose not to
denote dependence on S(t).

The basic properties of Hagedorn’s wave packets we shall need in the course of our
analysis are collected in the following two propositions.

Proposition 2. Let ε > 0, a, η ∈ Rn and A, B ∈ Cn×n such that (2.10) holds. Then

(i) Hagedorn’s wave packets {Φk | k ∈ Nn} form an orthonormal basis (ONB) of

L2(Rn). The lowering resp. raising operators act on them as follows:

Aj(A,B, ε,a,η)Φk (A,B, ε,a,η,x) =
√
kjΦk′ (A,B, ε,a,η,x) ,

A∗
j(A,B, ε,a,η)Φk (A,B, ε,a,η,x) =

√
kj + 1Φek (A,B, ε,a,η,x) .

(2.16)

where k′ = (k1, . . . , kj−1, kj−1, kj+1, . . . , kn), k̃ = (k1, . . . , kj−1, kj+1, kj+1, . . . , kn).

(ii) The Φks can be written as generalized Hermite functions, i.e. as products of gen-

eralized Hermite polynomials and the ground state Φ0: Let {ê1 , ê2 , . . . , ên} be the

standard ONB of Rn and A = RAUA the polar decomposition of A (i.e. RA =
√
AA∗

and UA is unitary). Then6

Φk (A,B, ε,a,η,x) =
2−

k
2

√
k!
Hk

(
UA; R−1

A

x− a√
ε

)
Φ0 (A,B, ε,a,η,x)

with Hk (UA; x) : = H̃k(UAê1, . . . , UAê1︸ ︷︷ ︸
k1 times

, . . . , UAên, . . . , UAên︸ ︷︷ ︸
kn times

; x) .
(2.17)

6Note that R−1
A is well defined by (2.12).
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Here the H̃m (v1, . . . ,vm; ·) (m ∈ N, v1, . . . ,vm ∈ Cn) are the generalized n-

dimensional Hermite polynomials defined by Hagedorn in [24]:

H̃0(x) := 1 , H̃1(v1; x) := 2 〈v1, x〉 ,
H̃m(v1, . . . ,vm; x) := 2 〈vm, x〉 H̃m−1(v1, . . . ,vm−1; x)

−2
m−1∑
i=1

〈vm, v̄i〉H̃m−2(v1, . . . , v̂i, . . . ,vm−1; x) .

(2.18)

(iii) For any multi-index α ∈ Nn (we abuse notation and write 〈·, ·〉 also for the scalar

product on L2(Rn))(
x− a√

ε

)α
Φk (A,B, ε,a,η,x)

=
∑

|k−k′|≤|α|
|k−k′|+|α| even

〈Φk′(UA,1, 1, 0, 0,x), (RAx)αΦk(UA,1, 1, 0, 0,x)〉Φk′
(
A,B, ε,a,η,x

) (2.19)

and(
p− η√

ε

)α
Φk (A,B, ε,a,η,x)

=
∑

|k−k′|≤|α|
|k−k′|+|α| even

〈Φk′(1, UB, 1, 0, 0,x), (RBp)αΦk(1, UB, 1, 0, 0,x)〉Φk′
(
A,B, ε,a,η,x

)
. (2.20)

For a proof of (i) see [25] (Theorem 3.3). For a proof of (ii) see [24] (cf. also Remark
3.2 in [25]). Parts of (iii) can be found in [24] (Remark 2) and [25] (equation (2.41)). For
the sake of completeness we give a short synopsis of the proof of (iii) in subsection 2.4.4.

Proposition 3. Let ε > 0, let a(t), η(t) be solutions of (2.4) and A(t), B(t) solutions of

(2.11) with initial data A0, B0 fulfilling (2.10). Then

(i) Hagedorn’s wave packets Φε
k evolve according to the Schrödinger evolution with the

truncated (quadratic) Hamiltonian H̃ε defined in subsection 2.1.1. That is for any

t , s ∈ R
Φε

k(x, t) = Ũ ε(t, s)Φε
k(x, s) . (2.21)

Moreover, they track the classical phase space trajectory (a(t), η(t)) in the sense

that (for all t ∈ R),

〈Φε
k(x, t), x Φε

k(x, t)〉 = a(t) ,

〈Φε
k(x, t), p Φε

k(x, t)〉 = η(t)
(2.22)
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and for any multi-index α ∈ Nn there are C1 <∞ and C2 <∞ (depending on k, α

and the matrix norm ‖A(t)‖ resp. on k, α and ‖B(t)‖) such that

‖(x− a(t))αΦε
k(x, t)‖2 ≤ C1ε

|α|
2 ,

‖(p− η(t))αΦε
k(x, t)‖2 ≤ C2ε

|α|
2 .

(2.23)

Here ‖ · ‖2 denotes the L2-norm.

(ii) The Φε
ks and their gradients scale in ε as follows: For all T > 0 there are constants

C <∞, C ′ <∞ (depending on k, A(t) and B(t)) such that

|Φε
k(x, t)| = ε−

n
4

∣∣∣Φk

(
A(t), B(t), 1, 0, 0,

x− a(t)√
ε

)∣∣∣
≤ ε−

n
4C
(
1 +

|x− a(t)|√
ε

)k
e
− 1

2
C

“
|x−a(t)|√

ε

”2

≤ C ′ε−
n
4

(2.24)

and∣∣∇Φε
k(x, t)− i

ε
η(t)Φε

k(x, t)
∣∣ = ε−

1
2

∣∣∣p− η(t)√
ε

Φε
k(x, t)

∣∣∣
≤ ε−(n4 + 1

2)C
(
1 +

|x− a(t)|√
ε

)k+1

e
− 1

2
C

“
|x−a(t)|√

ε

”2

≤ C ′ε−(n4 + 1
2)

(2.25)

for all t ∈ [0, T ] and x ∈ Rn. Remember that with the usual multi-index notation

k = |k| = k1 + . . .+ kn.

For a proof of (i) see [25]. Note that (2.22) and (2.23) are direct consequences of Propo-
sition 2 (iii) and the fact that the Φε

ks are orthonormal. (ii) follows from Proposition 2
(ii) by a straightforward calculation (cf. subsection 2.4.4). The idea is that, as generalized
n-dimensional Hermite function, every Φε

k is a product of a (generalized n-dimensional

Hermite) polynomial of order k in the components of x−a(t)√
ε

and a normalized Gaussian

wave packet centered at a(t) and with width ∼
√
ε. Thus the ε−

n
4 is in fact just a nor-

malization constant. Regarding (2.25) one should think of p−η(t)√
ε

as a liner combination
of a lowering and a raising operator, so we end up with having to estimate a polynomial
of order k + 1 times a Gaussian.

2.2 Bohmian trajectories of semiclassical wave

packets

We return to n = 3 and consider Hamiltonians Hε = − ε2

2
4 + V (x) , D(Hε) ⊂ L2(R3),

with V ∈ GV and wave functions ψεk(x, t) that are solutions of the Schrödinger equation
(2.1) with initial wave function ψεk(x, 0) = Φε

k(x, 0):

ψεk(x, t) = U ε(t)Φε
k(x, 0) for all t ∈ R.
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For these wave functions we get that in the limit ε → 0 Pψεk(·,0)-almost every Bohmian
trajectory becomes classical in the sense that it stays close to the corresponding classical
trajectory for arbitrary long time.

Theorem 1. Let V ∈ GV . Then

(i) the Bohmian trajectories X(x0, t) exist uniquely and globally in time for Pψεk(·,0)-

almost all initial positions x0 ∈ R3,

(ii) for all T > 0, γ > 0 and all multi-indices k ∈ N3 there exists some R < ∞ and

some ε0 > 0 such that

Pψεk(·,0)({x0 ∈ R3 | max
t∈[0,T ]

|X(x0, t)− a(t)| ≤ R
√
ε}) > 1− γ (2.26)

for all 0 < ε ≤ ε0.

For the proof we shall use that the probability that a Bohmian trajectory crosses a
certain surface (here the moving sphere SR√ε(a(t))) is bounded by the quantum proba-
bility flux across this surface (see subsection 2.4.1). So we will need pointwise estimates
on the quantum probability current density jψ

ε
k = vψ

ε
k |ψεk|2 = εIm[(ψεk)∗∇ψεk], that is

on ψεk and ∇ψεk. In [24, 25] Hagedorn showed that the semiclassical time evolution of

the wave packets Φε
k(x, t) = Ũ ε(t, 0)Φε

k(x, 0) is a good approximation for the Schrödinger
time evolution ψεk(x, t) = U ε(t)Φε

k(x, 0); in L2-norm the error is of order
√
ε better than

the leading order term Φε
k. That the same holds true also pointwise is the main technical

result of this work.

Lemma 1. Let V ∈ GV . Then for all multi-indices k ∈ N3 and all T > 0 there exists

some constant C <∞ such that

max
t∈[0 ,T ]

‖ψεk(· , t)− Φε
k(· , t)‖∞ ≤ Cε−

1
4 (2.27)

and

max
t∈[0 ,T ]

‖ |∇ψεk(· , t)−∇Φε
k(· , t)| ‖∞ ≤ Cε−

5
4 . (2.28)

Here ‖ · ‖∞ = sup
x∈R3

| · | denotes the sup-norm (not just the L∞-norm).

For the proof see subsection 2.4.3.

Remark 3. Note that on the macroscopic scale the wave packets’ supremum norm

‖Φε
k‖∞ tend to infinity for ε → 0. More precisely, by (2.24) and (2.25) ‖Φε

k‖∞ ∼ ε−
3
4

resp. ‖ |∇Φε
k| ‖∞ ∼ ε−

7
4 . Thus the pointwise errors (2.27) and (2.28) are indeed of order√

ε better than the leading order terms.
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Theorem 1 is a result about a particle’s typical Bohmian trajectory, i.e. about its
position. But what about its velocity?

While we believe that a statement analogous to (2.26) is true also for a particle’s
velocity, i.e.

Pψεk(·,0)({x0 ∈ R3 | max
t∈[0,T ]

|vψεk (X(x0, t), t)− η(t)| ≤ C
√
ε}) > 1− γ (2.29)

for some C < ∞ and all ε small enough, there is a major technical difficulty in proving
it for general k ∈ N3. The problem is that we cannot sufficiently controll the Bohmian

velocity field vψ
ε
k = εIm

(
∇ψεk
ψεk

)
in the vicinity of the wave function’s nodes. For (2.29)

we need that ∣∣vψεk − η
∣∣ =

∣∣∣Imε∇ψεk − iηψεk
ψεk

∣∣∣ ≤ |ε∇ψεk − iηψεk|
|ψεk|

– evaluated on a typical Bohmian trajectory X(x0, t) – is well behaved (i.e. of order
√
ε).

For the numerator we can find an upper bound that scales like ε−
1
4 and holds even for

all x ∈ R3. Regarding the denominator we know that for ε small enough |ψεk| ≈ |Φε
k|

pointwise (Lemma 1) and that by (2.25) |Φε
k(x, t)| = ε−

3
4 |Φk(A(t), B(t), 1, 0, 0, x−a(t)√

ε
)|

scales like ε−
3
4 . So we indeed get what we desire as long as the trajectory X(x0, t) does not

come too close to a node of ψεk resp. Φε
k (as long as

∣∣Φk

(
A(t), B(t), 1, 0, 0, X(x0,t)−a(t)√

ε

)∣∣ >
δ > 0):

Lemma 2. Let V ∈ GV . Then for all T > 0 , δ > 0 and all multi-indices k ∈ R3 there

exists some C <∞ and some ε0 > 0 such that for all 0 < ε ≤ ε0

|vψεk(x, t)− η(t)| ≤ C
√
ε (2.30)

for all t ∈ [0, T ] and all

x ∈ Gε
k,δ(t) :=

{
x ∈ R3 | |Φε

k(x, t)| > ε−
3
4 δ
}
. (2.31)

For the proof see subsection 2.4.2. So the real difficulty consists in showing that a
typical Bohmian trajectory stays away far enough from the nodes of ψεk: For all T >
0, γ > 0, k ∈ N3 there exists some δT,k(γ) > 0 such that

Pψεk(·,0)
({

x0 ∈ R3 |
∣∣Φε

k

(
X(x0, t), t

)∣∣ > ε−
3
4 δT,k(γ) for all t ∈ [0, T ]

})
> 1− γ (2.32)

for all ε small enough. Now, we already know the following. Since the Bohmian trajec-
tories X(x0, t) exist uniquely and globally in time for Pψεk(·,0)-almost all initial positions
x0 ∈ R3 (Theorem 1 (i)), a typical Bohmian trajectory cannot run into a node of ψεk (where
the velocity field is ill defined, see also the end of section 1.2): For all γ > 0, ε > 0, k ∈ N3

there is some δεk(γ) > 0 such that

Pψεk(·,0) ({x0 ∈ R3 | |ψεk(X(x0, t), t)| > δεk(γ) for all t ∈ R
})

> 1− γ . (2.33)

While this is a weaker statement than (2.32), by taking apart its proof in [6] one should
be able to extract the ε-dependence of δεk(γ) and thus to sharpen (2.33) to (2.32) (the
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proof in [39] is too abstract for that purpose). This, however, is beyond the scope of this
work7. While we do not prove (2.29) for general k ∈ N3, for the ground state k = 0 it is
an easy corollary to Theorem 1 and Lemma 2. Since Φε

0 is just a Gaussian, it does not
possess any nodes. Neither does ψε0 (for ε small enough). Thus:

Corollary 1. Let V ∈ GV . Then for all T > 0 and all γ > 0 there exists some R < ∞
and some ε0 > 0 such that

Pψε0(·,0)
({

x0 ∈ R3 | max
t∈[0,T ]

|X(x0, t)− a(t)| ≤ R
√
ε

∧ max
t∈[0,T ]

|vψε0(X(x0, t), t)− η(t)| ≤ R
√
ε
})

> 1− γ
(2.34)

for all 0 < ε ≤ ε0.

For the proof see subsection 2.4.2.

The above notwithstanding, we remark that Theorem 1 indeed does give rise to a
(somewhat weaker but empirically satisfying) statement on Bohmian velocities for any k ∈
N3. Since a typical Bohmian trajectory may not deviate too much from its corresponding
classical one, at least the time-averaged Bohmian velocity has to stay close to its classical
counterpart. More precisely, for any macroscopic time interval 0 < δt ≤ T

2
define the

time-averaged Bohmian and classical velocities (t ∈ [δt, T − δt])

v
ψεk
δt (x0, t) :=

1

2δt

t+δt∫
t−δt

vψ
ε
k (X(x0, s), s) ds ,

ηδt(t) :=
1

2δt

t+δt∫
t−δt

η(s)ds .

Now suppose x0 ∈ R3 is such that max
t∈[0,T ]

|X(x0, t)− a(t)| ≤ R
√
ε. Then

|vψ
ε
k

δt (x0, t)− ηδt(t)| =
1

2δt

∣∣∣ t+δt∫
t−δt

(
vψ

ε
k (X(x0, s), s)− η(s)

)
ds
∣∣∣

≤ 1

2δt

[
|X(x0, t+ δt)− a(t+ δt)|+ |X(x0, t− δt)− a(t− δt)|

]
≤ R

δt

√
ε .

So by Theorem 1 (ii) we immediately get

7Note that because of |ψεk| ≈ |Φεk|, the nodes of ψεk are essentially those of (the generalized Hermite

functions) Φεk and thus those of the generalized Hermite polynomials Hk

(
UA(t);RA(t)

x−a(t)√
ε

)
(cf. (2.17)).

Therefore |node of ψεk(x, t)−a(t)| ∼
√
ε, i.e. the nodes of ψεk live on the same scale as a typical Bohmian

trajectoy and there is no “simple” scaling-like proof of (2.32).
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Corollary 2. Let V ∈ GV . Then for all T > 0, γ > 0 and all multi-indices k ∈ N3 there

exists some R <∞ and some ε0 > 0 such that for any 0 < δt ≤ T
2

Pψεk(·,0)
({

x0 ∈ R3 | max
t∈[δt,T−δt]

|vψ
ε
k

δt (x0, t)− ηδt(t)| ≤
R

δt

√
ε
})

> 1− γ (2.35)

for all 0 < ε ≤ ε0.

Note that measuring macroscopic velocities generically involves some kind of macro-
scopic time averaging (as, for example, when calculating an object’s velocity by measuring
its time of flight across a given distance). So Corollary 2 in fact implies that empirically
the Bohmian velocity along a typical trajectory cannot be distinguished from its classical
counterpart in the limit ε→ 0.

2.3 Some remarks and a short outlook

We have presented results on a single “particle”, that is on the center of mass of a single
macroscopic body in an external potential. We remark that our method works also for
more than one such “particle”, i.e. in higher dimensions n = 3N, N > 1. Since we use
an instance of Gagliardo-Nirenberg (a Sobolev-type) inequality to prove the pointwise
estimates of Lemma 1, one would, however, need L2-estimates for higher order derivatives
of ψεk−Φε

k. As explained at the end of the overview at the very beginning of this chapter
this necessitates commuting correspondingly higher powers of p with the Schrödinger time
evolution e−

i
ε
Hεt, which then leads to more severe restrictions on the potential V , namely

that also higher (than fourth) order derivatives of V must be uniformly bounded.

In this context note also that Lemma 1 is most probable a stronger result than neces-
sary to get Theorem 1. Remember that we prove that a typical Bohmian trajectory stays
in a neighborhood of the classical trajectory a(t) by showing that the probability flux out
of this neighborhood is negligible. So we in fact need pointwise estimates analogous to
(2.27) and (2.28) and thus control over the Bohmian velocity field resp. the flux only in
a sufficiently big neighborhood of the classical trajectory a(t), t ∈ [0, T ]. In other words:
Since we expect typical Bohmian trajectories to stay close to a(t), we should have no
need of knowledge on the velocity field far away from a(t). But then also the potential
far away from a(t) should not play too big a role, i.e. it should be possible to replace the
requirement of uniform boundedness of the potential and its derivatives by boundedness
on an appropriate compactum. The latter, however, is already a consequence of the po-
tential’s regularity.

So far we have talked only about Bohmian trajectories made by wave functions that are
initially a Hagedorn wave packet Φε

k. But what about more general wave functions? What
are the next steps towards a more general classical limit of Bohmian mechanics? In [3]
Allori et al. outlined a general program for the classical limit of Bohmian mechanics where
they also argued that one should be able to reduce the case of general initial wave functions
to that of semiclassical wave packets (like, for example, Hagedorn’s). Summarized the
idea is that due to the (for ε→ 0 dominating) dispersive character of the free Schrödinger
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evolution a general initial wave function should evolve into a so called local plane wave
on a microscopic time scale. Here a local plane wave is essentially a sum of semiclassical
wave packets that evolve “side by side” without appreciably interfering with each other.
Since a particle’s actual Bohmian position is always in the support of one wave packet
only, this implies that one should be able to neglect the “empty” wave packets’ effects
on the particle’s evolution, that is that one should be able to effectively collapse the
local plane wave to just one semiclassical wave packet. Allori et al. also took care of
the caveat that this simple scheme generally breaks down at the “first caustic time”
of the classical dynamics: Remember that this is the first time at which the classical
action becomes multivalued which corresponds to a crossing of classical trajectories in
configuration space8. Since the semiclassical wave packets (that make up the local plane
wave) follow the classical trajectories, they will interfere and one can thus no longer neglect
the “empty” wave packets9. It is at this point where one has to abandon the idealization
of the isolated particle and invoke the effects of the environment (i.e. decoherence) to get
a stable collapse of the local plane wave to the wave packet containing the particle’s actual
position.

A prominent example for the formation of local plane waves is given by the free
Schrödinger evolution respectively by the asymptotically free Schrödinger evolution in
scattering situations. In chapter 3 we show that this indeed yields classical behavior of
the Bohmian trajectories (Theorems 2 and 4).

2.4 Proof

2.4.1 Proof of Theorem 1

(i) is a direct consequence of Proposition 1 if we can show that the initial wave function

ψεk(·, 0) = Φε
k(·, 0) is a C∞-vector of Hε, Φε

k(·, 0) ∈ C∞(Hε) =
∞⋂
n=1

D ((Hε)n). Note that

V ∈ GV guarantees that Hε maps the Schwartz space S(R3) into itself. Consequently
S(R3) ⊂ C∞(Hε). Since obviously Φε

k(·, 0) ∈ S(R3), we are done.

We proceed with the proof of (ii). Let γ > 0. For ε > 0 and R > 0 define

Gε
R :=

{
x0 ∈ R3 | max

t∈[0, T ]
|X(x0, t)− a(t)| < R

√
ε
}
.

Our task is to show that, for suitable R and ε, the measure of (Gε
R)c is smaller than γ.

The idea is to show that Pψεk(·,0)-almost no trajectory starts outside a ball with radius
∼
√
ε and center a(0) (easy L2-result) and to use the quantum probability flux to see

that a trajectory with starting point in this ball nearly never leaves a
√
ε-neighborhood

8In confining potentials this typically happens.
9Put differently: At the “edges” of a confining potential the dispersive character of the free Schrödinger

evolution is no longer dominating, so the local plane wave structure breaks down.
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of the classical trajectory a(t). Thus we write

Pψεk(·,0)
(
(Gε

R)c
)

≤ Pψεk(·,0) ({x0 ∈ R3 | |x0 − a(0)| ≥ R
√
ε
})

+ Pψεk(·,0) ({x0 | |x0 − a(0)| < R
√
ε ∧ ∃ t ∈ (0, T ] : |X(x0, t)− a(t)| ≥ R

√
ε
})

=: Pψεk(·,0) (BR
√
ε(a(0))c

)
+ Pψεk(·,0)

(
MT

R
√
ε(a(0))

)
.

(2.36)

Regarding the first summand note that ψεk(·, 0) = Φε
k(·, 0) and that by (2.24)

|Φε
k(x, t)| = ε−

3
4

∣∣∣Φk

(
A(t), B(t), 1, 0, 0,

x− a(t)√
ε

)∣∣∣
for any t ∈ R. Substituting y = x−a(0)√

ε
this in particular yields (y := |y|)

Pψεk(·,0)
(
BR

√
ε(a(0))c

)
=

∫
|x−a(0)|≥R

√
ε

|Φε
k(x, 0)|2 d3x =

∫
y≥R

|Φk(A(0), B(0), 1, 0, 0,y)|2 d3y .

Since Φk(A(0), B(0), 1, 0, 0, ·) is square summable (in fact it is normalized) we see that
there is some R′ <∞ independent of ε such that

Pψεk(·,0) (BR
√
ε(a(0))c

)
≤ γ

2
(2.37)

for all R > R′. Thus we are left with the task to find a suitable estimate for
Pψεk(·,0)

(
MT

R
√
ε
(a(0))

)
.

Since X(x0, t) (as a solution of (2.2)) is continuous in t, x0 ∈ MT
R
√
ε
(a(0)) implies

that X(x0, t) crosses the moving sphere SR√ε(a(t)) at least once and outwards in (0, T ].

Therefore Pψεk(·,0)(MT
R
√
ε
(a(0))

)
is bounded from above by the probability that some tra-

jectory crosses SR√ε(a(t)) in any direction in (0, T ]. In Subsection 2.3.2 of [6] Berndl
invoked the probabilistic meaning of the quantum probability current density

Jψ(x, t) =
(
jψ(x, t), |ψ(x, t)|2

)
:=
(
vψ(x, t)|ψ(x, t)|2, |ψ(x, t)|2

)
=
(
εIm

(
ψ∗(x, t)∇ψ(x, t)

)
, |ψ(x, t)|2

)
to prove that the expected number of crossings10 of a smooth surface Σ in configuration-
space-time by the random configuration-space-time trajectory (X(·, t) , t) is given by the
modulus of the flux across this surface,∫

Σ

∣∣Jψ(x, t) ·U
∣∣ dσ ,

where U denotes the local unit normal vector at (x, t) (see also the argument given in
[5], p. 11.). Since any trajectory (X(x0, t) , t) crosses Σ an integral number of times

10This also includes tangential ”crossings” in which the trajectory remains on the same side of Σ.
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(including 0 and ∞) this expected value gives an upper bound for the probability that
(X(x0, t) , t) crosses Σ. So in our case we obtain

Pψεk(·,0)
(
MT

R
√
ε(a(0))

)
≤
∫
ΣεT

∣∣∣Jψεk(x, t) ·U
∣∣∣ dσ (2.38)

where
Σε
T = {(x, t) | t ∈ [0, T ], x ∈ SR√ε(a(t))}

and U = 1√
1+〈η(t), ber〉2

(
êr,−〈η(t), êr〉

)
, dσ =

√
1 + 〈η(t), êr〉2 εR2dΩ dt. Here we have

used spatial polar coordinates centered at a(t) so that êr = (cosϕ sin θ, sinϕ sin θ, cos θ)
and dΩ = sin θ dϕ dθ. Thus

|Jψεk(x, t) ·U | dσ =
∣∣〈jψεk(x, t)− |ψεk(x, t)|2η(t), êr

〉∣∣ εR2dΩ

≤ |jψεk(x, t)− |ψεk(x, t)|2η(t)|εR2dΩ
(2.39)

where jψ
ε
k(x, t) − |ψεk(x, t)|2η(t) is evaluated at points (x, t) ∈ Σε

T . By the definition of
jψ and since η(t) is always real∣∣jψεk(x, t)− |ψεk(x, t)|2η(t)

∣∣ =
∣∣Im[(ψεk)∗(x, t)

(
ε∇ψεk(x, t)− iη(t)ψεk(x, t)

)]∣∣
≤ |ψεk(x, t)| |ε∇ψεk(x, t)− iη(t)ψεk(x, t)|

≤
(
|Φε

k(x, t)|+ |ψεk(x, t)− Φε
k(x, t)|

)(
ε|∇ψεk(x, t)−∇Φε

k(x, t)|

+ η(t) |ψεk(x, t)− Φε
k(x, t)|+ |ε∇Φε

k(x, t)− iη(t)Φε
k(x, t)|

)
.

Then by (2.24), (2.25) and Lemma 1∣∣jψεk(x, t)− |ψεk(x, t)|2η(t)
∣∣

≤

[
Cε−

3
4

(
1 +

|x− a(t)|√
ε

)k
e
− 1

2
C

“
|x−a(t)|√

ε

”2

+ Cε−
1
4

]
[
Cε−

1
4 + Cε−

1
4

(
1 +

|x− a(t)|√
ε

)k+1

e
− 1

2
C

“
|x−a(t)|√

ε

”2
]

≤ C
[
ε−1(1 +R)2k+1e−

1
2
CR2

+ ε−
1
2

]
where we have used that η(t) is continuous and thus bounded on [0, T ] and that (x, t) ∈ Σε

T

entails |x−a(t)|√
ε

= R. Plugging this into (2.39), we see that∣∣Jψεk(x, t) ·U
∣∣ dσ ≤ C

[
(1 +R)2k+1e−

1
2
CR2

+
√
ε
]
R2dΩ .

Thus by (2.38)

Pψεk(·,0)
(
MT

R
√
ε(a(0))

)
≤

T∫
0

dt

2π∫
0

dϕ

π∫
0

dθ sin(θ)CR2
[
(1 +R)2k+1e−

1
2
CR2

+
√
ε
]

≤ 2πTC
[
R2(1 +R)2k+1e−

1
2
CR2

+R2
√
ε
]
<
γ

2

(2.40)
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for R big and ε small enough.

Together (2.37) and (2.40) give the desired result:

Pψεk(·,0) (Gε
R) = 1− Pψεk(·,0) ((Gε

R)c) > 1− γ

for all R big and all ε small enough.

2.4.2 Proof of Corollary 1 and Lemma 2

With Lemma 2 we can use the fact that the ground state Φε
0 possesses no nodes to prove

Corollary 1.

Proof of Corollary 1. Let γ > 0 and T > 0. By Theorem 1 there exists some R <∞
and some ε0 > 0 such that

Pψε0({x0 ∈ R3 | max
t∈[0,T ]

|X(x0, t)− a(t)| ≤ R
√
ε}) > 1− γ

for all 0 < ε ≤ ε0. Now let x0 ∈ R3 such that max
t∈[0,T ]

|X(x0, t)− a(t)| ≤ R
√
ε. Then with

the help of (2.12) (2.15) gives

|Φε
0(X(x0, t), t)| = (πε)−

3
4 | det(A(t))|−

1
2 e−

1
2ε〈X(x0,t)−a(t),Re(B(t)A(t)−1)(X(x0,t)−a(t))〉

(2.12)
= (πε)−

3
4 | det(A(t))|−

1
2 e

− 1
2

˛̨̨
A(t)−1 X(x0,t)−a(t)√

ε

˛̨̨2
≥ (πε)−

3
4 | det(A(t))|−

1
2 e−

1
2
‖A(t)‖−2R2

.

Since A(t) is continuous (it solves (2.11)) and always invertible (cf. (2.12)),

min
t∈[0,T ]

| det(A(t))|− 1
2 > 0 and min

t∈[0,T ]
‖A(t)‖−2 > 0. So there exists some δ > 0 such that

min
t∈[0,T ]

|Φε
0(X(x0, t), t)| > ε−

3
4 δ ,

i.e. such that X(x0, t) ∈ Gε
k,δ(t) for all t ∈ [0, T ]. Then by Lemma 2

|vψε0(X(x0, t), t)− η(t)| ≤ C
√
ε

for some C <∞ and all t ∈ [0, T ]. �

So we are left to prove Lemma 2.
Proof of Lemma 2. Since V ∈ GV implies not only V ∈ C∞(R3) but also ψεk(x, 0) =
Φε

k(x, 0) ∈ C∞(Hε) (see beginning of proof of Theorem 1), one can use methods of elliptic
regularity to show that ψεk(x, t) ∈ C∞(R3×R) (Lemma 6.1 in [5]). Thus vψ

ε
k(x, t) is well

defined and C∞ on (R3×R) \N where N = {(x, t) ∈ R3×R | ψεk(x, t) = 0} is the set of
nodes of ψεk. Now let t ∈ [0, T ] ,x ∈ Gε

k,δ(t). Then by the definition (2.31) of Gε
k,δ(t) and

Lemma 1

|ψεk(x, t)| ≥ |Φε
k(x, t)| − |ψεk(x, t)− Φε

k(x, t)| > ε−
3
4 (δ − C

√
ε) ≥ ε−

3
4
δ

2
> 0 (2.41)
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for all ε > 0 small enough, i.e. x ∈ Gε
k,δ(t) guarantees not only Φε

k(x, t) 6= 0 but also

ψεk(x, t) 6= 0 and thus that vψ
ε
k(x, t) = εIm(

∇ψεk(x,t)

ψεk(x,t)
) is well defined. So we may write

|vψεk(x, t)− η(t)| =
∣∣∣Im(ε∇ψεk(x, t)− iη(t)ψεk(x, t)

ψεk(x, t)

)∣∣∣
≤ ε|∇ψεk(x, t)−∇Φε

k(x, t)|+ η(t) |ψεk(x, t)− Φε
k(x, t)|+ |ε∇Φε

k(x, t)− iη(t)Φε
k(x, t)|

|ψεk(x, t)|
.

Using (2.25), that is

|ε∇Φε
k(x, t)− iη(t)Φε

k(x, t)| ≤ Cε−
1
4 ,

(2.41) and Lemma 1 we get (ηT := max
t∈[0,T ]

η(t) <∞ since η(t) is continuous)

|vψεk(x, t)− η(t)| ≤ 2

δ
ε

3
4 [Cε−

5
4
+1 + CηT ε−

1
4 + Cε−

1
4 ] < C

√
ε

for all t ∈ [0, T ] and x ∈ Gε
k,δ(t), i.e. we are done. �

2.4.3 Proof of Lemma 1

We give a rough outline of the proof of (2.27) (that of (2.28) is completely analogous).

Using Cook’s method (aka Duhamel’s formula) our starting point is (remember Hε−H̃ε =
V3)

ψεk(x, t)−Φε
k(x, t) =

[
U ε(t)− Ũ ε(t, 0)

]
Φε

k(x, 0) = − i
ε

t∫
0

U ε(t−s)V3(x,a(s))Φε
k(x, s)d s .

This gives the desired result (2.27) if ‖U εV3Φ
ε
k‖∞ ∼ ε

3
4 . Indeed, we shall show (Lemma

3) that for every m ∈ N

max
s,t∈[0,T ]

‖U ε(t− s)Vm(·,a(s))Φε
k(·, s)‖∞ ≤ Cε

m
2
− 3

4 .

That ‖VmΦε
k‖∞ ∼ ε

m
2
− 3

4 is comparatively easy to see. To get rid of the unitary (on L2(R3))

time evolution U ε(t − s) = e−
i
ε
Hε(t−s) we use an instance of the Gagliardo-Nirenberg

inequality ([23, 31], see (2.48) below) and p = −iε∇,

‖U εVmΦε
k‖∞ ≤ C‖U εVmΦε

k‖
1
4
2 max
|α|=2

‖DαU εVmΦε
k‖

3
4
2

= Cε−
3
2‖VmΦε

k‖
1
4
2 max
|α|=2

‖pαU εVmΦε
k‖

3
4
2 .

(2.42)

Then ‖U εVmΦε
k‖∞ ∼ ε

m
2
− 3

4 if ‖pαU εVmΦε
k‖2 ∼ ε

m+|α|
2 .

The latter, however, is false in general. Remember that Vm(x,a) is the mth remainder
term of the Taylor expansion of V about a, that is roughly Vm(x,a) ∼ (x− a)m. Since
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x−a√
ε

acts on Φε
k as a combination of lowering and raising operators (cf. Proposition 2 (iii)),

this means that
VmΦε

k ∼ ε
m
2

∑
|k′−k|≤m

Φε
k′ .

Moreover, since by Proposition 3 pαΦε
k′ ∼ ηαΦε

k′ , this implies that even

‖pαVmΦε
k‖2 ∼ ε

m
2 ‖pαΦε

k′‖2 ∼ ε
m
2 ‖ηαΦε

k′‖2 ∼ ε
m
2

is of order ε−
|α|
2 worse than what we need.

To circumvent this impasse we use a trick: We substract the leading order, that
is instead of pαΦε

k′ we contrive to use (p − η)αΦε
k′ , which by Proposition 3 is exactly

of order ε
|α|
2 better than pαΦε

k′ . Indeed, since |e− i
ε
〈η,x−a〉U εVmΦε

k| = |U εVmΦε
k| and

|pαe− i
ε
〈η,x−a〉U εVmΦε

k| = |(p− η)αU εVmΦε
k|, instead of (2.42) we may also write

‖U εVmΦε
k‖∞ ≤ Cε−

3
2‖VmΦε

k‖
1
4
2 max
|α|=2

‖(p− η)αU εVmΦε
k‖

3
4
2 .

Thus ‖U εVmΦε
k‖∞ ∼ ε

m
2
− 3

4 if ‖(p− η)αU εVmΦε
k‖2 ∼ ε

m+|α|
2 .

The latter is the content of Lemma 4 and is proven in two steps. First we use
p2

2
= Hε − V , the fact that [Hε, U ε] = 0 and brute force to commute pα and U ε and

consequently show that indeed ‖pαU εVmΦε
k‖2 ∼ ‖pαVmΦε

k‖2 ∼ ε
m
2 . Since η(t) is bounded

on [0, T ] this implies that also ‖(p − η)αU εVmΦε
k‖2 is at least of order ε

m
2 . In a second

step we apply Cook’s trick once more to construct a bootstrapping argument that allows

us to sharpen this non-optimal estimate to the desired ‖(p− η)αU εVmΦε
k‖2 ∼ ε

m+|α|
2 .

We now give the details of the proof. As mentioned above our starting point is
(t ∈ [0, T ])

ψεk(x, t)− Φε
k(x, t) = − i

ε

t∫
0

U ε(t− s)V3(x,a(s))Φε
k(x, s)d s . (2.43)

A priori equality in (2.43) holds in the sense of L2-functions, i.e. for almost every x ∈ R3,
only. In the course of our proof (Lemma 3 below) we shall however see that U εV3Φ

ε
k

is continuously differentiable11 with respect to x and that U εV3Φ
ε
k and ∇U εV3Φ

ε
k are

bounded for all s, t ∈ [0, T ] and x ∈ R3. So by dominated convergence also ψεk −Φε
k (and

thus ψεk) is continuously differentiable12 with

∇ψεk(x, t)−∇Φε
k(x, t) = − i

ε
∇

t∫
0

U ε(t− s)V3(x,a(s))Φε
k(x, s)d s

= − i
ε

t∫
0

∇U ε(t− s)V3(x,a(s))Φε
k(x, s)d s .

(2.44)

11When we say that some f ∈ L2 is r times continuously differentiable we of course mean that there
is some f̃ ∈ Cr such that f̃(x) = f(x) for almost every x. Since, however, such a f̃ is always unique, we
can safely identify (the equivalence class) f with (its smooth representative) f̃ .

12In fact even ψεk ∈ C∞(R3 × R). See the beginning of the proof of Lemma 2.
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Moreover, by continuity (2.43) and(2.44) hold in fact pointwise for all x ∈ R3.

Let us state our results on (∇)U εV3Φ
ε
k.

Lemma 3. Let V ∈ GV and T > 0, m ∈ N, k ∈ N3. Then U ε(t − s)Vm(·,a(s))Φε
k(·, s)

is continuously differentiable for all s, t ∈ [0, T ] and there exists some C <∞ such that

max
s,t∈[0,T ]

‖U ε(t− s)Vm(· ,a(s))Φε
k(· , s)‖∞ ≤ Cε

m
2
− 3

4 (2.45)

and

max
s,t∈[0,T ]

‖ |∇U ε(t− s)Vm(· ,a(s))Φε
k(· , s)| ‖∞ ≤ Cε

m
2
− 7

4 . (2.46)

Then, plugging (2.45) and (2.46) into (2.43) and (2.44) immediately yields Lemma 1,
i.e.

max
t∈[0 ,T ]

‖ψεk(· , t)− Φε
k(· , t)‖∞ ≤ T

ε
max
s,t∈[0,T ]

‖U ε(t− s)V3(· ,a(s))Φε
k(· , s)‖∞ ≤ CTε−

1
4

and

max
t∈[0 ,T ]

‖ |∇ψεk(· , t)−∇Φε
k(· , t)| ‖∞ ≤ T

ε
max
s,t∈[0,T ]

‖ |∇U ε(t− s)V3(· ,a(s))Φε
k(· , s)| ‖∞

≤ CTε−
5
4 .

As explained in the outline above to prove Lemma 3 we need L2-estimates of
(p− η)αU εVmΦε

k. They are collected in

Lemma 4. Let V ∈ GV . For every T > 0, m ∈ N and k ∈ N3 there exists some C <∞
such that

max
s,t∈[0,T ]

‖(p− η(t))α U ε(t− s)Vm(· ,a(s))Φε
k(· , s)‖2 ≤ Cε

m+|α|
2 (2.47)

for all multi-indices 0 ≤ |α| ≤ 3.

Remark 4. For m = 0 and s = 0 Lemma 4 in particular implies

max
t∈[0,T ]

‖(p− η(t))α ψεk(· , t)‖2 ≤ Cε
|α|
2

for some C <∞ and all 0 ≤ |α| ≤ 3. So we have, for example, that regarding momentum

not only the Φε
k(x, t)’s but also the ψεk(x, t)’s standard deviation is of order

√
ε. Since

the momentum operator p is unbounded this is not a consequence of Hagedorn’s results

‖ψεk − Φε
k‖2 ∼

√
ε and ‖(p− η(t))α Φε

k‖2 ∼ ε
|α|
2 ([24, 25]; see also Proposition 3).

With Lemma 4 we may go on to the

Proof of Lemma 3.
Let

gεm,k(x, t, s) := U ε(t− s)Vm(x,a(s)Φε
k(x, s),
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and

g̃εm,k(x, t, s) := e−
i
ε
〈η(t),x−a(t)〉gεm,k(x, t, s).

We use an instance of Gagliardo-Nirenberg’s inequality [23, 31]: For every
n ∈ N and l > n

2
there is some C < ∞ such that for every f ∈ W l,2(Rn)

= {f ∈ L2(Rn) | max
|α|≤l

‖Dαf‖2 <∞}

‖f‖∞ ≤ C
(

max
|α|=l

‖Dαf‖2

) n
2l ‖f‖1− n

2l
2 . (2.48)

Moreover, f ∈ Cr(Rn) for all 0 ≤ r < l − n
2
.

First, to prove (2.45) we apply (2.48) to g̃εm,k. Since |gεm,k(x, t, s)| = |g̃εm,k(x, t, s)|
(2.48) with n = 3 and l = 2 gives

max
s,t∈[0,T ]

‖gεm,k(·, t, s)‖∞ = max
s,t∈[0,T ]

‖g̃εm,k(·, t, s)‖∞

≤ Cmax
|α|=2

‖Dαg̃εm,k(·, t, s)‖
3
4
2 ‖g̃εm,k(·, t, s)‖

1
4
2 .

(2.49)

So we need to calculate ‖Dαg̃εm,k‖2 for multi-indices α ∈ N3 with |α| = 0 and|α| = 2.
Note however, that

Dαg̃εm,k(x, t, s) =

|α|∑
|β|=0

(
α

β

)(
Dβe−

i
ε
〈η(t),x−a(t)〉

)
Dα−βgεm,k(x, t, s)

= e−
i
ε
〈η(t),x−a(t)〉

|α|∑
|β|=0

(
α

β

)(
− i
ε
η(t)

)β (
i

ε
p

)α−β
gεm,k(x, t, s)

=

(
i

ε

)|α|
e−

i
ε
〈η(t),x−a(t)〉 (p− η(t))α gεm,k(x, t, s)

and thus by Lemma 4

max
s,t∈[0,T ]

‖Dαg̃εm,k(·, t, s)‖2 = ε−|α| max
s,t∈[0,T ]

‖ (p− η(t))α gεm,k(·, t, s)‖2 ≤ Cε
m−|α|

2 . (2.50)

With (2.49) this yields (2.45):

max
s,t∈[0,T ]

‖gεm,k(·, t, s)‖∞ ≤ Cε
m−2

2
3
4
+m

2
1
4 = Cε

m
2
− 3

4 .

The proof of (2.46) is analogous. By (2.48) (with n = 3 and l = 2)

max
s,t∈[0,T ]

∥∥ ∣∣∇gεm,k(·, t, s)
∣∣ ∥∥

∞ ≤ 3max
s,t∈[0,T ]
|β|=1

∥∥∥e− i
ε
〈η(t),x−a(t)〉Dβgεm,k(·, t, s)

∥∥∥
∞

≤ Cmax
|α|=2
|β|=1

‖Dαe−
i
ε
〈η(t),x−a(t)〉Dβgεm,k(·, t, s)‖

3
4
2 max

|β|=1
‖Dβgεm,k(·, t, s)‖

1
4
2 .
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However by Lemma 4 we get∥∥Dαe−
i
ε
〈η(t),x−a(t)〉Dβgεm,k(·, t, s)

∥∥
2

= ε−(|α|+|β|)∥∥ (p− η(t))α pβgεm,k(·, t, s)
∥∥

2

≤ ε−(|α|+1)
(∥∥ (p− η(t))α+β gεm,k(·, t, s)

∥∥
2
+ max

t∈[0,T ]
|η(t)|

∥∥ (p− η(t))α gεm,k(·, t, s)
∥∥

2

)
≤ Cε

m−|α|−1
2

and thus (2.46). �

Remark 5. Instead of the Gagliardo-Nirenberg inequality (2.48) we could also use canon-

ical Sobolev inequalities. However, then we get results that are not of optimal order in

ε,

‖U εVmΦε
k‖∞ ≤ C

[ 2∑
|α|=0

ε−|α| ‖(p− η(t))αU εVmΦε
k‖

2
2

] 1
2 ≤ C̃ε

m
2
−1

and

‖ |∇U εVmΦε
k| ‖∞ ≤ C

[ 3∑
|α|=0

ε−|α| ‖(p− η(t))αU εVmΦε
k‖

2
2

] 1
2 ≤ C̃ε

m
2
−2 .

Note that also this weaker results suffice to get convergence to classical behavior in the

sense of Theorem 1 – but with a lower rate of convergence. More precisely, instead of

(2.26) one gets

Pψεk(·,0)({x ∈ R3 | max
t∈[0,T ]

|X(x0, t)− a(t)| ≤ Rε
1
4}) > 1− γ .

We conclude the proof of Lemma 1 with the

Proof of Lemma 4. We expand the notation of Lemma 3 to:

f εm,k(x, s) := Vm (x,a(s)) Φε
k(x, s) resp. f ε(m,l),k(x, s) := Vm,l (x,a(s)) Φε

k(x, s) ,

gεm,k(x, t, s) = U ε(t− s)f εm,k(x, s) resp. gε(m,l),k(x, t, s) := U ε(t− s)f ε(m,l),k(x, s) .

In the following we set ‖ · ‖ = ‖ · ‖2. We first prove the weaker result (|α| ≤ 3)

max
s,t∈[0,T ]

∥∥(p− η(t))α gεm,k(·, t, s)
∥∥ ≤ Cε

m
2 (2.51)

and then use a bootstrapping argument to arrive at (2.47).

Since η(t) is bounded on [0, T ], instead of (2.51) it suffices to prove that

max
s,t∈[0,T ]

∥∥pαgεm,k(·, t, s)
∥∥ ≤ Cε

m
2 (2.52)

for some C <∞ and all |α| ≤ 3. For that we first get rid of the (unitary) time evolution
U ε, i.e. we express ‖pαgεm,k‖ in terms of ‖f εm,k‖, ‖Hεf εm,k‖ and ‖(Hε)2f εm,k‖. We then
mimic the proof of (2.38) in [25] to find estimates for the latter.
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Since U ε is unitary
‖gεm,k(·, t, s)‖ = ‖f εm,k(·, s)‖ . (2.53)

Since p = −iε∇ is self-adjoint, by Schwarz’s inequality and (2.53)

max
|α|=1

‖pαgεm,k(·, t, s)‖ = max
j

〈
gεm,k(·, t, s), p2

jg
ε
m,k(·, t, s)

〉 1
2

≤
(
‖f εm,k(·, s)‖ ‖p2gεm,k(·, t, s)‖

) 1
2 ,

(2.54)

max
|α|=2

‖pαgεm,k(·, t, s)‖ ≤ ‖p2gεm,k(·, t, s)‖

and

max
|α|=3

‖pαgεm,k(·, t, s)‖ ≤
(
‖p2gεm,k(·, t, s)‖‖p4gεm,k(·, t, s)‖

) 1
2 .

Thus we get (2.52) if we can show that ‖f εm,k‖, ‖p2gεm,k‖ and ‖p4gεm,k‖ are of order ε
m
2 .

Write p2 = 2(Hε − V ). Since [Hε, U ε] = 0 and V is bounded by CV (cf. Definition 1),

‖p2gεm,k(·, t, s)‖ = 2‖(Hε − V )gεm,k(·, t, s)‖
≤ 2

[
‖HεU ε(t− s)f εm,k(·, s)‖+ ‖V ‖∞‖gεm,k(·, t, s)‖

]
≤ 2

[
‖Hεf εm,k(·, s)‖+ CV ‖f εm,k(·, s)‖

]
.

(2.55)

In the same way

‖p4gεm,k(·, t, s)‖ = 4‖(Hε − V )2gεm,k(·, t, s)‖

≤ 4

[
‖(Hε)2f εm,k(·, s)‖+ 2‖V ‖∞‖Hεf εm,k(·, s)‖+ ‖V ‖2

∞‖f εm,k(·, s)‖

+ ‖[Hε, V ]gεm,k(·, t, s)‖
]

≤ 4

[
‖(Hε)2f εm,k(·, s)‖+ 2CV ‖Hεf εm,k(·, s)‖+ C2

V ‖f εm,k(·, s)‖

+ ε‖ 〈∇V, p〉 gεm,k(·, t, s)‖+
ε2

2
‖4V ‖∞‖f εm,k(·, s)‖

]
Since V ∈ GV implies that also ∇V and 4V are bounded by CV , this yields

‖p4gεm,k(·, t, s)‖ = 4‖(Hε − V )2gεm,k(·, t, s)‖
(2.54)

≤ 4

[
‖(Hε)2f εm,k(·, s)‖+ 2CV ‖Hεf εm,k(·, s)‖+ CV (CV +

ε2

2
)‖f εm,k(·, s)‖

+ εCV
(
‖f εm,k(·, s)‖ ‖p2gεm,k(·, t, s)‖

) 1
2

]
(2.55)

≤ 4

[
‖(Hε)2f εm,k(·, s)‖+ 2CV ‖Hεf εm,k(·, s)‖+ CV (CV +

ε2

2
)‖f εm,k(·, s)‖

+
√

2εCV ‖f εm,k(·, s)‖
1
2

(
‖Hεf εm,k(·, s)‖+ CV ‖f εm,k(·, s)‖

) 1
2

]
.
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Thus we get (2.52) if we can show that ‖f εm,k‖, ‖Hεf εm,k‖ and ‖(Hε)2f εm,k‖ are of order

ε
m
2 . We mimic the proof of (2.38) in [25] and introduce the following splitting (R > 0):

‖f εm,k(·, s)‖2 =

∫
|x−a(s)|≤R

∣∣Vm(x,a(s))Φε
k(x, s)

∣∣2d3x +

∫
|x−a(s)|>R

∣∣Vm(x,a(s))Φε
k(x, s)

∣∣2d3x =: I + II .

Recall Definition 2, i.e. that Vm is the remainder

Vm(x,a) = V (x)−
m−1∑
|α|=0

1

α!
(DαV )(a)(x− a)α =

∑
|α|=m

1

α!
(DαV ) (ξ(x,a)) (x− a)α

where ξ(x,a) = a+λ(x−a) for some λ ∈ (0, 1). Remember also that a(s) is continuous
in s. Since V is C∞ this implies

max
s∈[0,T ]
|α|≤m−1

|(DαV )(a(s))| <∞

and

max
s∈[0,T ]
|α|=m

max
|x−a(s)|≤R

|(DαV ) (ξ(x,a(s)))| <∞ .

Since ‖V ‖∞ ≤ CV , there thus is some C <∞ such that for all s ∈ [0, T ]

|Vm(x,a(s))| ≤ ‖V ‖∞ +

[
max
s∈[0,T ]
|α|≤m−1

|(DαV )(a(s))|
]m−1∑
l=0

∑
|α|=l

l!

α!

|x− a(s)|l

l!

≤ CV +

[
max
s∈[0,T ]
|α|≤m−1

|(DαV )(a(s))|
] ∞∑
l=0

(3 |x− a(s)|)l

l!
≤ Ce3|x−a(s)|

and

max
|x−a(s)|≤R

|Vm(x,a(s))| ≤ C|x− a(s)|m ,

where we have used that
∑
|α|=l

l!
α!

= nl for all n-dimensional multi-indices α ∈ Nn. Substi-

tuting y := x−a(s)√
ε

, with the above and (2.24) we get

II ≤ C

∞∫
R√
ε

(1 + y)2k e−y(Cy−6
√
ε)dy ≤ Ce

− C√
ε

and

I ≤ C

R√
ε∫

0

εmy2m(1 + y)2k e−Cy
2

dy ≤ Cεm
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for some C <∞. So
max
s∈[0,T ]

‖f εm,k(·, s)‖ = O(ε
m
2 ) . (2.56)

To estimate ‖Hεf εm,k‖ write

Hεf εm,k(x, s) = Vm(x,a(s))HεΦε
k(x, s) + [Hε, Vm(x,a(s))]Φε

k(x, s) .

With Ecl = 1
2
η(s)2 + V (a(s)) and [Hε, Vm] = −iε 〈∇Vm, p〉 − ε2

2
(4Vm) this gives (where

there is no risk of confusion we suppress dependence on x and s respectively a(s))

Hεf εm,k = Eclf
ε
m,k + Vm(Hε − Ecl)Φ

ε
k − iε 〈∇Vm, p〉 Φε

k −
ε2

2
(4Vm)Φε

k

= Eclf
ε
m,k +

1

2
Vm(p2 − η2)Φε

k + Vm(V (x)− V (a))Φε
k

− iε 〈∇Vm, η〉 Φε
k − iε 〈∇Vm, p− η〉 Φε

k −
ε2

2
(4Vm)Φε

k

= Eclf
ε
m,k +

1

2
Vm(p− η)2Φε

k + Vm 〈η, p− η〉Φε
k + VmV1Φ

ε
k

− iε 〈∇Vm, η〉 Φε
k − iε 〈∇Vm, p− η〉 Φε

k −
ε2

2
(4Vm)Φε

k .

Now, by (2.20) we see that (p − η)Φε
k is

√
ε times a (vector of) linear combination(s)

of Φε
k′ ’s with |k − k′| = 1 and (p − η)2Φε

k is ε times a linear combination of Φε
k′ ’s with

|k − k′| ∈ {0, 2}. Thus Hεf εm,k is a sum of terms of the form

C(η)f̃ εm,k′ = C(η)Ṽ ε
mΦε

k′

where C(η) is either a constant or some function of η, |k− k′| ≤ 2 and Ṽ ε
m is a wild card

for Vm, εVm,
√
εVm, VmV1, ε(∂jVm), ε

3
2 (∂jVm) or ε2(∂2

jVm) (j = 1, 2, 3). Note that

(DαVm)(x,a) = (DαV )(x)−
m−1∑
|β|=0

1

β!

(
DβV

)
(a)Dα(x− a)β

= (DαV )(x)−
m−|α|−1∑
|β′|=0

1

β′!

(
Dβ′DαV

)
(a)(x− a)β

′
= (DαV )m−|α|(x,a) ,

so Ṽ ε
m is either VmV1 or of the form ε

l
2 Ṽm−r where the “new” potential Ṽ is a placeholder

for V, ∂jV or ∂2
jV and l, r ∈ N are such that l−r ≥ 0. Now, since V ∈ GV implies Ṽ ∈ C∞

and ‖Ṽ ‖∞ ≤ max
|α|≤2

‖DαV ‖∞ ≤ CV , not only the proof of ‖VmV1Φ
ε
k′‖ = O(ε

m+1
2 ) but also

that of ‖Ṽm−rΦε
k′‖ = O(ε

m−r
2 ) is completely analogous to that of (2.56). Therefore, ‖f̃ εm,k′‖

is either of order ε
m+1

2 (Ṽ ε
m = VmV1) or of order ε

m+l−r
2 ≤ ε

m
2 (Ṽ ε

m = ε
l
2 Ṽm−r), that is we

get

max
s∈[0,T ]

‖Hεf εm,k(·, s)‖ ≤
∑

max
s∈[0,T ]

|C(η)| ‖f̃ εm,k′(·, s)‖ = O(ε
m
2 ) . (2.57)

Finally, ‖(Hε)2f εm,k‖ = O(ε
m
2 ) clearly follows if we can show that, for each of the

above f̃ εm,k′ , ‖H
εf̃ εmk′‖ is (at least) of order ε

m
2 . The proof of the latter, however, is
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completely analogous to that of (2.57). Just note that this time we get up to fourth order

derivatives of V as “new” potentials Ṽ , which is why in the definition of GV we required
that ‖DαV ‖∞ ≤ CV for |α| ≤ 4.

So we have shown that (2.52) and thus also (2.51) holds. To get (2.47) we split Vm
into Vm = Vm,m + Vm+1 (cf. Definition 2). Then by (2.51)

‖ (p− η(t))αgεm,k(·, t, s)‖
≤ ‖ (p− η(t))α gε(m,m),k(·, t, s)‖+ ‖ (p− η(t))α gεm+1,k(·, t, s)‖

≤ ‖ (p− η(t))α gε(m,m),k(·, t, s)‖+ Cε
m+1

2 .

(2.58)

To estimate (p− η)α gε(m,m),k note that by definition

gε(m,m),k(x, t, s) = U ε(t− s)Vm,m(x,a(s)Φε
k(x, s)

= ε
m
2 U ε(t− s)

∑
|β|=m

1

β!

(
DβV

)
(a(s))

(
x− a(s)√

ε

)β
Φε

k(x, s)

and that
(

x−a√
ε

)β
Φε

k is a finite sum of Φε
k′s with |k − k′| ≤ m and coefficients that are

independent of ε and uniformly bounded on [0, T ] (cf. (2.19)). Since also
(
DβV

)
(a(s))

is uniformly bounded on [0, T ] (V ∈ C∞(R3) and a(s) continuous in s) it thus suffices to
estimate

ε
m
2 (p− η(t))α U ε(t− s)Φε

k′(x, s)

for |k − k′| ≤ m. For this we use once more Cook’s method, i.e.

U ε(t− s)Φε
k′(x, s) = Φε

k′(x, t)−
i

ε

t∫
s

U ε(t− τ)V3 (x,a(τ)) Φε
k′(x, τ) dτ

= Φε
k′(x, t)−

i

ε

t∫
s

gε3,k′(x, t, τ) dτ .

Since by (2.51) ‖ (p− η(t))α gε3,k′(·, t, τ)‖ < Cε
3
2 , changing the order of differentiation

(p = −iε∇) and integration in

‖ (p− η(t))α
t∫

s

gε3,k′(·, t, τ) dτ‖ = ‖
t∫

s

(p− η(t))α gε3,k′(·, t, τ) dτ‖

is justified by dominated convergence and we thus get (for any s, t ∈ [0, T ])

ε
m
2 ‖ (p− η(t))αU ε(t− s)Φε

k′(·, s)‖

≤ ε
m
2 ‖ (p− η(t))α Φε

k′(·, t)‖+ ε
m
2
−1

t∫
s

‖ (p− η(t))α gε3,k′(·, t, τ)‖ dτ

≤ ε
m+|α|

2

∥∥∥∥(p− η(t)√
ε

)α
Φε

k′(·, t)
∥∥∥∥+ ε

m+1
2 CT .
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By (2.23) this yields

ε
m
2 ‖ (p− η(t))α U ε(t− s)Φε

k′(·, s)‖ ≤ C
(
ε
m+|α|

2 + ε
m+1

2

)
and thus also

‖ (p− η(t))α gε(m,m),k(·, t, s)‖ ≤ C
(
ε
m+|α|

2 + ε
m+1

2

)
.

Putting this into (2.58) we see that we can sharpen (2.51) to

max
s,t∈[0,T ]

∥∥(p− η(t))α gεm,k(·, t, s)
∥∥ ≤ C

(
ε
m+|α|

2 + ε
m+1

2

)
≤ Cε

m+1
2 .

Repeating this bootstrapping argument several times we finally arrive at

max
s,t∈[0,T ]

∥∥(p− η(t))α gεm,k(·, t, s)
∥∥ ≤ C

(
ε
m+|α|

2 + ε
m+|α|

2

)
,

i.e. at (2.47).

�

2.4.4 Completing the proofs of Propositions 2 and 3

Proof of Proposition 2 (iii). We start with the proof of (2.19). Since the Φks form
an ONB this is equivalent to showing that〈

Φk′ (A,B, ε,a,η,x) ,

(
x− a√

ε

)α
Φk (A,B, ε,a,η,x)

〉
= 〈Φk′(UA,1, 1, 0, 0,x), (RAx)αΦk(UA,1, 1, 0, 0,x)〉

(2.59)

for all k, k′, α ∈ Nn and

〈Φk′(UA,1, 1, 0, 0,x), (RAx)αΦk(UA,1, 1, 0, 0,x)〉 = 0

for all k, k′, α ∈ Nn with |k− k′| > |α| or |k− k′|+ |α| odd. Since the scalar product is
sesquilinear the latter is equivalent to proving that

〈Φk′(UA,1, 1, 0, 0,x), xαΦk(UA,1, 1, 0, 0,x)〉 = 0 (2.60)

for all k, k′, α ∈ Nn with |k − k′| > |α| or |k − k′|+ |α| odd.

Writing Φk as generalized Hermite function (cf. (2.15) and (2.17)) we get〈
Φk′ (A,B, ε,a,η,x) ,

(
x− a√

ε

)α
Φk (A,B, ε,a,η,x)

〉
=

(πε)−
n
2

| det(A)|
2−

k+k′
2

√
k′!k!

×
∫
Rn

H∗
k′(UA; R−1

A

x− a√
ε

)Hk(UA; R−1
A

x− a√
ε

)

(
x− a√

ε

)α
e
−

D
x−a√
ε
,Re(BA−1)x−a√

ε

E
dnx

RAy=x−a√
ε

= π−
n
2

2−
k+k′

2

√
k′!k!

∫
Rn

H∗
k′(UA; y)Hk(UA; y) (RAy)α e−y

2

dny .
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In the last step we have used (2.12), i.e. Re(BA−1) = (AA∗)−1 = R−2
A , and | det(RA)|

| det(A)|

= 1
| det(UA)| = 1. Note that Re(U−1

A ) = 1 and thus π−
n
2 e−y

2
= π−

n
2

| det(UA)|e
−〈y,Re(UA)y〉

= |Φ0(UA,1, 1, 0, 0, R
−1
A y)|2. So, using (2.17) once more, we see that〈

Φk′ (A,B, ε,a,η,x) ,

(
x− a√

ε

)α
Φk (A,B, ε,a,η,x)

〉
=

= 〈Φk′(UA,1, 1, 0, 0,x), (RAx)αΦk(UA,1, 1, 0, 0,x)〉 ,

i.e. that (2.59) holds.

To prove (2.60), note that with the help of (2.13) we may write x as a sum of lowering
and raising operators (cf. [25] (3.28)):

x =
1√
2

(
UAA∗(UA,1, 1, 0, 0) + UAA(UA,1, 1, 0, 0)

)
.

Then (2.60) follows by a straightforward induction on |α|.
Finally (2.20) is an easy consequence of (2.19) (resp. of (2.59) and (2.60)) and the fact

that (see [24] Lemma 2.2 resp. [25] (3.19))

(FεΦk (A,B, ε,a,η, ·)) (ξ) = (−i)ke−
i
ε
〈a,η〉Φk (B,A, ε,η,−a, ξ)

where the scaled Fourier transform Fε is defined as

(Fεψ) (ξ) = (2πε)−
n
2

∫
e−

i
ε
〈x, ξ〉ψ(x)dnx .

Then, using Plancherel’s theorem, Fε (pψ) (ξ) = ξ (Fεψ) (ξ) and (2.59),〈
Φk′ (A,B, ε,a,η,x) ,

(p− η√
ε

)α
Φk (A,B, ε,a,η,x)

〉
= ik

′−k
〈

Φk′ (B,A, ε,η,−a, ξ) ,
(ξ − η√

ε

)α
Φk (B,A, ε,η,−a, ξ)

〉
= ik

′−k 〈Φk′(UB,1, 1, 0, 0, ξ), (RBξ)αΦk(UB,1, 1, 0, 0, ξ)〉
= 〈Φk′(1, UB, 1, 0, 0,x), (RBp)αΦk(1, UB, 1, 0, 0,x)〉 .

Similarly, we can use (2.60) to get

〈Φk′(1, UB, 1, 0, 0,x), pαΦk(1, UB, 1, 0, 0,x)〉 = 0

for all k, k′, α ∈ Nn with |k − k′| > |α| or |k − k′|+ |α| odd. Thus (2.20) holds. �

Proof of Proposition 3 (ii). According to part (ii) of Proposition 2

|Φε
k(x, t)| = 2−

k
2

√
k!

∣∣∣∣Hk

(
UA(t); R

−1
A(t)

x− a(t)√
ε

)∣∣∣∣ |Φε
0(x, t)|



2.4. PROOF 33

and∣∣∣(∇− i

ε
η(t)

)
Φε

k(x, t)
∣∣∣ ≤ 2−

k
2

√
k!

[∣∣∣∇Hk

(
UA(t); R

−1
A(t)

x− a(t)√
ε

)∣∣∣ |Φε
0(x, t)|

+
∣∣∣Hk

(
UA(t); R

−1
A(t)

x− a(t)√
ε

)∣∣∣ ∣∣∣(∇− i

ε
η(t)

)
Φε

0(x, t)
∣∣∣] .

By the definition of Hk (equations (2.17) and (2.18)) we see that Hk(UA(t); R
−1
A(t)

x−a(t)√
ε

) is

a polynomial of kth order in the components of x−a(t)√
ε

with coefficients depending on A(t)

resp. A(t)−1. Since A(t) is continuous and invertible for all t ∈ R (cf. (2.11) and (2.12)),
i.e. since 0 < min

t∈[0,T ]
‖A(t)‖ and max

t∈[0,T ]
‖A(t)‖ < ∞, this implies that there is some C < ∞

such that ∣∣∣Hk

(
UA(t); R

−1
A(t)

x− a(t)√
ε

)∣∣∣ ≤ C
(
1 +

|x− a(t)|√
ε

)k
and ∣∣∣∇Hk

(
UA(t); R

−1
A(t)

x− a(t)√
ε

)∣∣∣ ≤ 1√
ε
C
(
1 +

|x− a(t)|√
ε

)k−1

for all t ∈ [0, T ]. Similar, by (2.15) there is some C < ∞ (depending also on B(t)) such
that (remember Re(BA−1) = (AA∗)−1)

|Φε
0(x, t)| =

(πε)−
n
4√

| det(A(t))|
e
− 1

2

D
x−a(t)√

ε
,Re(B(t)A(t)−1)x−a(t)√

ε

E

=ε−
n
4

∣∣∣Φ0

(
A(t), B(t), 1, 0, 0,

x− a(t)√
ε

)∣∣∣ ≤ ε−
n
4Ce

− 1
2
C

“
|x−a(t)|√

ε

”2

and∣∣∣(∇− i

ε
η(t)

)
Φε

0(x, t)
∣∣∣= (πε)−

n
4√

| det(A)|

∣∣∣B(t)A(t)−1x− a(t)

ε

∣∣∣ e− 1
2

D
x−a(t)√

ε
,Re(B(t)A(t)−1)x−a(t)√

ε

E

≤ ε−(n
4
+ 1

2
)C
(
1 +

|x− a(t)|√
ε

)
e
− 1

2
C

“
|x−a(t)|√

ε

”2

for all t ∈ [0, T ]. Thus

|Φε
k(x, t)| = ε−

n
4

∣∣∣Φk

(
A(t), B(t), 1, 0, 0,

x− a(t)√
ε

)∣∣∣
≤ ε−

n
4C

(
1 +

|x− a(t)|√
ε

)k
e
− 1

2
C

“
|x−a(t)|√

ε

”2

and ∣∣∣∣∇Φε
k(x, t)− i

ε
η(t)Φε

k(x, t)

∣∣∣∣ ≤ ε−(n4 + 1
2)C

(
1 +

|x− a(t)|√
ε

)k+1

e
− 1

2
C

“
|x−a(t)|√

ε

”2

,

i.e. we get the first parts of (2.24) and (2.25). Noting that sup
r≥0

(1 + r)ke−
1
2
Cr2 < ∞ (for

every k ∈ N) gives the rest. �





Chapter 3

On the Detection Statistics of Many

Particle Quantum Scattering

In this chapter we use the asymptotically classical behavior of Bohmian trajectories in
scattering situations to derive from first principles the detection probability of particles
in a given solid angle.

The central quantity in a scattering experiment is the cross section, whose derivation
is based on the probability that particles are detected in a given solid angle. To calculate
this probability one usually relies on two things: First, one uses the asymptotic S-matrix
formalism. The working physicist’s justification for this is that “an experimentalist gen-
erally prepares a state . . . at t → −∞, and then measures what this state looks like at
t → +∞” (cf. [41], p. 113), pretending that the asymptotic expressions are “all there
is” – as if they weren’t the asymptotics of some other expression, however complicated,
describing the scattering process as it really is, namely happening at finite distances and
at finite times. Second, one ignores the presence of detectors, i.e. one neglects possible in-
fluences of the detection process on the statistics of the detection. In short, one calculates
the unmeasured statistics.

Clearly a justification of the S-matrix formalism must be based on a physically real-
istic, i.e. finite, setup that contains the S-matrix formalism as an appropriate limit case
and it must consider the possible influence of the detection process on the measured re-
sults. Concerning the former, there have been various attempts to base the S-matrix
formalism on realistic expressions. In section 3.1 we briefly discuss two such approaches,
namely Dollard’s scattering into cones, and the flux across surfaces theorems, which have
received much attention in recent years. However, both these approaches do not come to
grips with the physically realistic situation which succinctly can be summarized by the
observation that the scattered particles arrive at the detectors at random times. Within
Bohmian mechanics this is easily described (although not easily computed!). In a first
step we calculate the exit statistics of Bohmian particles through surfaces which we may
think of as detector surfaces, but we ignore the detectors as parts of the physical system.
In a second step we address the exit statistics when the detectors are physically present.

35



36 CHAPTER 3. DETECTION STATISTICS

Our first object is therefore the joint first exit statistics, i.e. the probability

Pψ (the first exit of the lth particle is in RΣl, l = 1, . . . , N) , (3.1)

where Σl ⊂ S2 are subsets of the three-dimensional unit sphere and the RΣl := {x ∈ R3 |
x = Rω, ω ∈ Σl} denote the corresponding pieces of the spherical surface with radius
R covering the solid angles Σl. The relevant parameter is the distance R of the detectors

from the scattering center. More precisely let Xψ
l (x0, t

Bl,R
ex ) ∈ R3 denote1 the position of

the lth particle at the first exit time t
Bl,R
ex when it leaves the ball xl < R for the first time

(cf. (3.17)). We shall prove that

lim
R→∞

Pψ
(
Xψ

l (x0, t
Bl,R
ex ) ∈ RΣl ∀ l ∈ {1, . . . , N}

)
=

∫
CΣ1

. . .

∫
CΣN

∣∣∣ψ̂out(k)
∣∣∣2 d3k1 · · · d3kN (3.2)

where k = (k1, . . . ,kN) ∈ R3N and CΣl := {kl ∈ R3 | kl
kl
∈ Σl} is the cone given by Σl

(see Figure 3.1). Furthermore ̂ denotes the Fourier transform and ψout is the outgoing
asymptote corresponding to the scattering wave function ψ. Note that the right hand side
of (3.2) is the formula resulting from the S-matrix formalism.

Target

RS2

Σ1

Σ2

S2

x1
x2

suppψ

RΣ1

X
ψ
1
(x1,x2, t)

RΣ2 X
ψ
2
(x1,x2, t)

Figure 3.1: Sketch of the scattering situation for N = 2.

We remark that our theorem is formulated in terms of the realistic spatial limit rather
than a temporal one, as it is often done in scattering theory (see also [33] for a note on
this).

The idea for proving (3.2) is rather simple and, from a Bohmian point of view, the
most immediate one: One expects that for large times, i.e. far away from the scattering
center, the particles’ trajectories become classical straight lines. In fact we shall show

that for large times the velocity Ẋ
ψ
(x0, t) = (Ẋ

ψ

1 (x0, t), . . . , Ẋ
ψ

N(x0, t)) converges to the
asymptotic velocity

vψ∞ := lim
t→∞

Ẋ
ψ
(x0, t)

t
,

1In this chapter we switch back to the default notation of section 1.2.
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which is |ψ̂out|2-distributed,2 i.e. for A ∈ R3N

Pψ
(
vψ∞ ∈ A

)
=

∫
A

|ψ̂out(k)|2 d3Nk. (3.3)

Moreover, we shall show that the difference between actual and asymptotic velocity is so
well behaved, that the exit statistics for large R is given by the asymptotic velocity. With
the distribution (3.3) this then leads to (3.2).

The asymptotic form of the velocity field is no surprise since (as is well known)

lim
t→∞

∥∥∥e−iHtψ − (it)−
3N
2 ei

x2

2t ψ̂out

(x

t

)∥∥∥ = 0

and thus at least in the L2-sense ψ(·, t) is close to the local plane wave (it)−
3N
2 ei

x2

2t ψ̂out

(
x
t

)
.

For large times the latter yields a velocity field of straight paths. Now one can expect that
under certain conditions this closeness in L2 results also in a closeness of the corresponding
velocity fields.

In a second step we analyze the exit statistics (the detection statistics),

Pψ (the lth particle hits a detector surface RΣl, l = 1, . . . , N) , (3.4)

when the detectors are physically present. The effect of detection is of course backscatter-
ing through the interaction with the detector and the collapse of the wave function. We
do not elaborate on the backscattering, which is already present in one particle scattering,
and which will be argued to be small. On the other hand the effect of collapse cannot be
argued away, collapse will happen, and when the particles’ wave function is entangled, as
it is generically the case, one must show that the collapse does not affect the exit statis-
tics we discussed above. The problem is the following: As was stressed before, particles
arrive at the detectors at random times. When the first particle is detected the other
particles are still on their way. But the detection of the first particle collapses the wave
function. Why doesn’t that affect the motion of the as yet undetected particles? In view
of Bell’s nonlocality this question possesses no trivial answer. The answer lies within the

“quasi”-product structure of the local plane waves (it)−
3N
2 ei

x2

2t ψ̂out

(
x
t

)
that the scattered

wave functions tend to in the scattering regime. In these local plane waves all particles
move on straight lines and remain to do so even after the collapse. Indeed we shall prove3

that, analogous to (3.2),

lim
R→∞

Pψ
(
XR

l (x0, t
R
l (x0)) ∈ RΣl ∀ l ∈{1, 2, . . . , N}

)
=

∫
CΣ1

. . .

∫
CΣN

∣∣∣ψ̂out(k)
∣∣∣2 d3k1 · · · d3kN ,

(3.5)

where the position XR
l (x0, t

R
l (x0)) of the lth particle at the first exit time tRl (x0) when

it leaves the ball xl < R (i.e. hits one of the detector surfaces that among them cover

2We again use natural units ~ = ml = 1 where p = k = v.
3For ease of notation we in fact prove (3.5) only for N = 2. The generalization to N ≥ 3 is, however

straightforward, cf. footnote 9.
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RS2) for the first time is now calculated using the collapsed wave function (see subsection
3.4.2).

This remainder of this chapter is organized as follows. We briefly discuss Dollard’s
scattering into cones and the flux-across-surfaces theorems as attempts to justify the S-
matrix formalism (section 3.1). We describe the mathematical framework, that is the
setup of many particle potential scattering (section 3.2). In section 3.3 we state our
result on the asymptotically classical behavior of the unmeasured Bohmian trajectories
of N scattered particles (Theorem 2). Section 3.4 contains our main results: We state
and prove the unmeasured instance of the first exit statistics theorem (Theorem 3), give
the asymptotically classical behavior of the measured Bohmian trajectories of N scattered
particles (Theorem 4) and state and prove the measured instance of the first exit statistics
theorem (Theorem 5). We give a short outlook (section 3.5) on the extension to the case of
interacting particles. Finally, we prove our results on the asymptotically classical behavior
of Bohmian trajectories, i.e. Theorems 2 and 4 (section 3.6).

3.1 Previous works on the foundations of scattering

formalism

First works on a deeper justification of the asymptotic S-matrix formalism go back to
Dollard [15, 16]. With his scattering-into-cones theorem he gave a first connection between
position and momentum space:

lim
t→∞

∫
CΣ1

d3x1 . . .

∫
CΣN

d3xN |ψ(x, t)|2 =

∫
CΣ1

d3k1 . . .

∫
CΣN

d3kN

∣∣∣ψ̂out(k)
∣∣∣2 ,

i.e. the probability of finding the scattered particles at large times in the cones CΣ1 , . . . ,
CΣN is given by the probability that the momenta of the outgoing asymptotes lay in the
cones CΣ1 , . . . , CΣN , respectively. However, the connection to (3.1) resp. the left hand side
of (3.2) is still missing. Crucial in this context is that the time of detection is random and
not given by the experimenter. Only R is given. Thus one has to consider a spatial rather
than a temporal limit. While the latter may be technical convenient, it is not mirroring
the actual physical situation.

For the case of one particle, the next step was taken by Combes, Newton, Shtokhamer
[10] who proposed the so called flux-across-surfaces theorem (FAST). It states that

lim
R→∞

∞∫
0

∫
RΣ

jψ(x, t) · dσdt = lim
R→∞

∞∫
0

∫
RΣ

|jψ(x, t) · dσ|dt =

∫
CΣ

∣∣∣ψ̂out(k)
∣∣∣2 d3k,

where the quantum mechanical probability current density (short the flux) jψ is given by

jψ(x, t) = Im (ψ∗(x, t)∇ψ(x, t)) .

Hence, asymptotically the flux points outwards and the integrated flux gives rise to the
asymptotic S-matrix formalism. It is hard to resist to identify the first exit probability,
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i.e. the left hand side of (3.2) (with N = 1), with the integrated flux, i.e. with

∞∫
0

∫
RΣ

jψ(x, t) · dσdt .

For general R, however, this is not true. In general the integrated flux is not positive
and therefore not a probability (in fact not even the integrated absolute value of the flux
is a probability). Only asymptotically (for large R) does the integrated flux turn into a
probability. But the probability of what? If the meaning of the integrated flux is, at least
in the usual quantum formalism, not clear for finite R, how can one possibly divine its
meaning for R→∞?

This loophole is closed in Bohmian mechanics, where the integrated flux has got also a
non-asymptotic meaning. For that one introduces the number of crossings of a trajectory
through an oriented surface. If one denotes by Nψ

sig(RΣ,∆T ) the signed crossings through
RΣ during the time interval ∆T , i.e. the difference between outward crossings and inward
crossings, one can show that (cf. also subsection 2.4.1)

Eψ(Nψ
sig(RΣ,∆T )) =

∫
∆T

∫
RΣ

jψ(x, t) · dσdt, (3.6)

where dσ = x
x
dσ is the infinitesimal surface element. Similarly one has that4

Eψ(Nψ
tot(RΣ,∆T )) =

∫
∆T

∫
RΣ

|jψ(x, t) · dσ|dt, (3.7)

where Nψ
tot denotes the total crossings through RΣ, i.e. the sum of outward crossings and

inward crossings. Hence, with the FAST

lim
R→∞

Eψ(Nψ
tot(RΣ, [0,∞))) = lim

R→∞
Eψ(Nψ

sig(RΣ, [0,∞))) .

This means that the scattered particle crosses distant surfaces only outwards and thus
at most once. Then one can easily show that (3.2) holds (see [17], Section 3, and [13,
11, 12, 22] for more details). It is this non-asymptotic meaning of the flux in Bohmian
mechanics together with the FAST, which in the one-particle case leads to a satisfying
exit statistics theorem. First proofs of the FAST can be found in [13, 11, 12]. More results
are in [38, 37]. The most recent result on the FAST including a review of the existing
results can be found in [18].

The corresponding problem for the N -particle case, however, is different: It was shown
in [21] that there the quantum flux looses its significance. That is so because each particle
has got its own exit time and thus a multi-time setup is needed. In such a setup, however,
it is no longer possible to establish an N -particle statement corresponding to (3.6) or
(3.7), which is basic for the exit statistics theorem if one wants to use the flux. This
is why one has to take an alternative approach like the direct use of the asymptotically
classical behavior of the Bohmian trajectories presented above.

4The proof can be found in [5], pp. 34-37, see also [17], Section 3, for a heuristic approach.
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3.2 N-particle potential scattering

We consider a system of N non-interacting particles with configuration space R3N and
Hamiltonian

H = H0 + V (x) , V (x) =
N∑
l=1

Vl(xl) (3.8)

where each Vl is a short-range scattering potential Vl ∈ (V )n (n ∈ N):

Definition 4. For n ∈ N V ∈ (V )n if

(i) V ∈ L2(R3, R),

(ii) V is C∞ except, perhaps, at finitely many singularities,

(iii) there exist δ > 0, C > 0, R0 > 0 such that

|V (x)| ≤ C〈x〉−n−δ for x ≥ R0,

where 〈·〉 := (1 + (·)2)
1
2 .

Then the potential V (x) is H0-bounded with arbitrarily small bound and H is self-adjoint

on D(H) = D(H0) = W 2(R3N) with W 2(R3N) = {f ∈ L2(R3N) :
∫
|k2f̂(k)|2d3Nk < ∞}

the second Sobolev-space (Kato’s theorem, see, e.g., [32] Theorem X.16). Since there is
no interaction we may also write

H =
N∑
l=1

Hl =
N∑
l=1

(
− 1

2
∆l + Vl(xl)

)
=

N∑
l=1

(H0,l + Vl(xl)) .

In the following, we abuse notation and do not distinguish between, say Hl as a multi-
particle operator (defined on L2(R3N)) and Hl as a one-particle operator (defined on
L2(R3)). Now, for every l ∈ {1, . . . , N}, the wave operators Ω±,l : L2(R3) → Ran(Ω±,l)

Ω±,l := s - lim
t→±∞

eiHlte−iH0,lt

exist5 and are asymptotically complete (see, e.g., [33]), i.e.

Ran(Ω±,l) = Hcont(Hl) = Ha.c.(Hl) ,

where Hcont(Hl) resp.Ha.c.(Hl) denotes the spectral subspace of L2(R3) that belongs to
the continuous resp. the absolutely continuous spectrum of the Hamiltonian Hl. Thus
L2(R3) is the orthogonal sum of Ha.c.(Hl) and Hp.p.(Hl) (the subspace that belongs to the
pure point spectrum of Hl), Ha.c.(Hl) and Hp.p.(Hl) are invariant under the time evolution
Ul(t) = e−iHlt and for every scattering wave function ψ ∈ Ha.c.(Hl) there exists a unique
outgoing/incoming asymptote

ψout/in,l := Ω−1
±,lψ (3.9)

5s - lim denotes the limit in L2-sense.
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that evolves according to the free time evolution e−iH0,lt, i.e. for which

lim
t→±∞

‖e−iH0,ltψout/in,l − e−iHltψ‖ = 0 .

Since H contains no interaction potentials the time evolution U(t) = e−iHt on L2(R3N)
trivially factorizes,

U(t) =
N∏
l=1

Ul(t) =
N∏
l=1

e−iHlt ,

and there is a natural splitting of L2(R3N),

L2(R3N) ∼=
N⊗
l=1

L2(R3) =
N⊗
l=1

(
Ha.c.(Hl)⊕Hp.p.(Hl)

)
∼= Hs(H)⊕Hrest(H),

where

Hs(H) :∼=
N⊗
l=1

Ha.c.(Hl)

and ∼= is defined by the canonical isomorphism between L2(R3N) and
⊗N

l=1 L
2(R3). Then

Hs(H) and Hrest(H) are invariant under the time evolution U(t) = e−iHt and Hs(H)
contains the ”pure“ scattering wave functions, i.e. those wave functions for which all N
particles are free asymptotically (for t→ ±∞) while Hrest(H) contains those wave func-
tions where either all or at least some particles stay bound. For simplicity we restrict
ourselves to the case where the initial wave function is a pure scattering wave function,
ψ ∈ Hs(H). Then the relevant wave operators are Ω

(N)
± := s - lim

t→±∞
eiHte−iH0t. Indeed,

observe that

Ω
(N)
± =

N∏
l=1

Ω±,l ,

which implies that Ran(Ω
(N)
± ) = Hs(H) and that for every pure scattering wave function

ψ ∈ Hs(H) there exists a unique outgoing/incoming asymptote

ψout/in :=
(
Ω

(N)
±

)−1

ψ (3.10)

that evolves according to the free time evolution e−iH0t.

3.3 Asymptotic behavior of Bohmian trajectories in

scattering situations

We first present the result on the asymptotically classical behavior of the Bohmian trajec-
tories we wish to employ in the proof of the exits statistics theorem (3.2). It is an extension
of that for one particle in [34]. In Definition 5 we define the set G(N) of “good” initial
wave functions, for which we can proof our results. This set is optimized for generality
and occurred in a similar form already in [18, 34] (for N = 1).
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Definition 5. A function f : R3N → C is in G(N)
0 , if

f ∈ Hs(H) ∩ C∞(H),

〈x〉
3N+1

2
+βHnf ∈ L2(R3N), β ∈ {N + 1, N + 2, . . . , 2N}, n ∈ {0, 1, 2, . . . , 4N − β} ,

〈x〉
3N+1

2
+NHnf ∈ L2(R3N), n ∈ {2N, 2N + 1, . . . , 3N} .

Then G(N) :=
⋃
t∈R

e−iHtG(N)
0 . Here C∞(H) =

∞⋂
n=1

D(Hn).

For ψ ∈ G(N) we get the desired asymptotically classical behavior of the Bohmian trajec-
tories.

Theorem 2. Let Vl ∈ (V )4 and let zero be neither a resonance nor an eigenvalue of Hl

(l = 1, . . . , N). Let ψ ∈ G(N) with ‖ψ‖ = 1. Then:

(i) The Bohmian trajectories Xψ(x0, t) exist uniquely and globally in time for Pψ-almost

all initial configurations x0 ∈ R3N .

(ii) For Pψ-almost all Bohmian trajectories the asymptotic velocity lim
t→∞

vψ
(
Xψ(x0, t), t

)
is given by vψ∞(x0) := lim

t→∞
Xψ(x0,t)

t
. More precisely, vψ∞ exists for Pψ-almost all

x0 ∈ R3N and for all ε > 0 there exist some T <∞ and some C <∞ such that

Pψ
({

x ∈ R3N |
∣∣vψ (Xψ(x0, t), t

)
− vψ∞(x0)

∣∣ < Ct−
1
2 ∀ t ≥ T

})
> 1− ε . (3.11)

(iii) vψ∞ is randomly distributed with density |ψ̂out(·)|2, i.e. for every measurable set

A ⊂ R3N

Pψ
({

x0 ∈ R3N | vψ∞(x0) ∈ A
})

=

∫
A

|ψ̂out(k)|2 d3Nk . (3.12)

The proof of Theorem 2 can be found in subsection 3.6.1.

Remark 6. Zero is a resonance of H if there exists a solution f of Hf = 0 such that

〈·〉−γf ∈ L2(R3) for any γ > 1
2

but not for γ = 0.6 The occurrence of a zero eigenvalue or

resonance is an exceptional event: For Hamiltonians H(c) = H0+cV the set of parameters

c ∈ R, for which zero is an eigenvalue or a resonance, is discrete (see e.g. [2], p. 20 and

[28], p. 589).

It is well known that, in L2-sense, the large time asymptote of a scattering wave function

ψ(x, t) is given by Φ(x, t) := (it)−
3N
2 ei

x2

2t ψ̂out

(
x
t

)
. Moreover, one easily sees that the

Bohmian velocity field of Φ(x, t) is essentially that of straight paths (cf. [34]):

vΦ(x, t) = Im
∇Φ(x, t)

Φ(x, t)
=

x

t
+

1

t
Im
∇ψ̂out(y)

ψ̂out(y)

∣∣∣∣
y=x

t

t big
≈ x

t
.

6There are various definitions, see e.g. [42], p. 552, [2], p.20 and [28], p. 584.
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Thus the main technical difficulty in proving Theorem 2 is to show that the velocity field
(1.2) of ψ(x, t) is approximated sufficiently well by that of its asymptote Φ(x, t), i.e. that
ψ(x, t) and Φ(x, t) are close not only in the L2-sense but also in the stronger sense of
velocity fields. For that one needs detailed pointwise estimates on ψ(x, t) and its gradient.
They are collected in the following

Lemma 5. Let Vl ∈ (V )4 and zero be neither a resonance nor an eigenvalue of Hl

(l = 1, . . . , N). Let ψ ∈ G(N). Then for all 0 < a < b < ∞ there exist constants T < ∞
and C <∞ such that for all t > T and a < xl

t
< b, l = 1, . . . , N

|ψ(x, t)− Φ(x, t)| ≤ Ct−
3N+1

2 (3.13)

and ∣∣∣∇ψ(x, t)− i
x

t
Φ(x, t)

∣∣∣ ≤ Ct−
3N+1

2 . (3.14)

The proof of Lemma 5 can be found in subsection 3.6.3. The idea is to use the method
of expansion in generalized eigenfunctions, i.e. in functions ϕ

(N)
+ that are solutions of the

stationary Schrödinger equation

Hϕ
(N)
+ (x,k) =

k2

2
ϕ

(N)
+ (x,k)

with the boundary condition lim
x→∞

∣∣ϕ(N)
+ (x,k)− eik·x

∣∣ = 0. The generalized eigenfunctions

ϕ
(N)
+ diagonalize H on Hs(H) as the plane waves eik·x diagonalize H0. Thus one can

define a generalized Fourier transform connecting the outgoing asymptote ψout and the
pure scattering wave function ψ ∈ Hs(H) via7

ψ(x) = (2π)−
3N
2 l. i.m.

∫
ϕ

(N)
+ (x,k)ψ̂out(k)d3Nk

and

ψ̂out(k) = (2π)−
3N
2 l. i.m.

∫ (
ϕ

(N)
+

)∗
(x,k)ψ(x)d3Nx . (3.15)

Moreover,

ψ(x, t) = (2π)−
3N
2 l. i.m.

∫
e−i

k2t
2 ϕ

(N)
+ (x,k)ψ̂out(k)d3Nk . (3.16)

We elaborate on that and the properties of the generalized eigenfunctions ϕ
(N)
± in sub-

section 3.6.2. With the help of stationary phase methods (3.16) will give us the desired

pointwise estimates on (∇)ψ(x, t) whenever ψ̂out and the generalized eigenfunctions ϕ
(N)
+

are sufficiently regular (subsection 3.6.3).

7l. i.m.
∫

is a shorthand notation for s - lim
R→∞

∫
BR

, where s - lim denotes the limit in the L2-norm and

BR is a ball with radius R around the origin.
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Note, however, that it is important to impose any emerging technical conditions on the
scattering wave function ψ rather than its asymptote ψout, since it is the former not the
latter that is prepared in an experiment. Thus, we shall use (3.15) to infer how smoothness

properties of ψ map to the desired smoothness properties of ψ̂out (subsection 3.6.3, Lemma
10). Of course, also this mapping crucially depends on the regularity properties of the
generalized eigenfunctions. This regularity, however, is very poor in general. Thus one can
use only weak requirements on ψ̂out, which in turn makes the application of stationary
phase methods to (3.16) quite a tricky business. Nevertheless, for N = 1 the above
program was successfully carried out in [18]. For general N and interacting particles,
however, not enough is known about the generalized eigenfunctions (cf. section 3.5). This
is why we restrict ourselves to non-interacting particles and pure scattering wave functions
ψ ∈ Hs(H). In this case we can show that ψ can be expanded in N -particle eigenfunctions

ϕ
(N)
+ which are products of the one-particle generalized eigenfunctions ϕ+,l (cf. equation

(3.52)) which gives us all the leverage on the ϕ
(N)
+ s we need.8

3.4 Exit statistics

3.4.1 The first exit statistics theorem

The first task is to find a formalized expression for the (unmeasured) joint first exit
probability (3.1). To explain what is meant by “the first exit of the lth particle is in RΣl”
we define the first exit time tAex(x0) at which the trajectory {Xψ(x0, t), t ≥ 0} leaves an
open subset A ⊂ R3N for the first time:

tAex(x0) := inf
{
t ≥ 0 | Xψ(x0, s) ∈ A ∀s ∈ [0, t) and Xψ(x0, t) 6∈ A

}
, (3.17)

where we set tAex(x0) = 0 if the above set is empty. tAex is a random variable on the space
R3N of initial configurations (cf. [6], Lemma 4.2). Clearly, Bl,R := {x ∈ R3N | xl < R} is
open and {Xψ(x0, t), t ≥ 0} leaves Bl,R exactly when the lth particle’s trajectory leaves
the open ball BR = {x ∈ R3 | x < R}. Moreover, continuity of Xψ(x0, t) in t (as a

solution of (1.2)) implies Xψ
l (x0, t

Bl,R
ex (x0)) ∈ δBR = RS2, so “the first exit of the lth

particle is in RΣl” if and only if Xψ
l (x0, t

Bl,R
ex (x0)) ∈ RΣl. Hence

Pψ(the first exit of the lth particle is in RΣl, l = 1, . . . , N)

= Pψ
(
Xψ

l (x0, t
Bl,R
ex (x0)) ∈ RΣl ∀l ∈ {1, . . . , N}

)
.

We remark that “problematical crossings” (tangential crossings where the velocity

Ẋ
ψ

l (x0, t) is orthogonal to the orientation of RΣl) have measure zero and need not concern
us, see [6], pp. 28-34.

With the above we can formulate the first exit statistics theorem.

8In fact we don’t even need to explicitly apply stationary phase methods to (3.16) but can directly
fall back on results for the one particle case, see subsection 3.6.3.
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Theorem 3. Let Vl ∈ (V )4 and let zero be neither a resonance nor an eigenvalue of Hl

(l = 1, . . . , N). Let ψ ∈ G(N) with ‖ψ‖ = 1. Then:

lim
R→∞

Pψ
({

x0 ∈ R3N | Xψ
l (x0, t

Bl,R
ex (x)) ∈ RΣl , l = 1, 2, . . . , N

})
=

∫
CΣ1

d3k1 . . .

∫
CΣN

d3kN

∣∣∣ψ̂out(k)
∣∣∣2 . (3.2)

Proof of Theorem 3. Because of Theorem 2 (iii) we are done if we can show that

lim
R→∞

Pψ
(
Xψ

l (·, tBl,Rex ) ∈ RΣl , l = 1, 2, . . . , N
)

= Pψ
(
vψ∞ ∈ CΣ1 × . . .× CΣN

)
, (3.18)

i.e. that each particle’s trajectory Xψ
l leaves the ball BR for the first time through RΣl

if and only if the asymptotic velocity vψ∞,l is in CΣl . For that it suffices that the actual

trajectory Xψ differs not too much from the “ideal” trajectory vψ∞t. But this is a simple
consequence of Theorem 2. Let ε > 0. Integrating (3.11) we get that there is some
Cε <∞ and some Tε <∞ such that

Pψ
({

x0 ∈ R3N | |Xψ(x0, t)−Xψ(x0, T )− vψ∞(x)(t− T )| < Cε
√
t, ∀t ≥ T

})
> 1− ε

3

for all T > Tε. Since Theorem 2 (i), i.e. global existence of Bohmian mechanics, guarantees
that Pψ-almost no trajectory reaches spatial infinity in finite time we also know that

Pψ
({

x0 ∈ R3N | sup
0≤t≤Tε

|Xψ(x0, t)| < CTε
})

> 1− ε

3

for some CTε <∞. Moreover, by Theorem 2 (iii) and since ψ̂out ∈ L2(R3N)

Pψ
(
vψ∞ < bε

)
=

∫
k<bε

|ψ̂out(k)|2 d3Nk > 1− ε

3

for bε > 0 big enough. So, noting that∣∣∣Xψ(x0, t)− vψ∞(x0)t
∣∣∣ ≤ sup

0≤t≤Tε
|Xψ(x0, t)|+ vψ∞(x0)Tε < CTε + bεTε

for 0 ≤ t ≤ Tε,∣∣∣Xψ(x0, t)− vψ∞(x0)t
∣∣∣

≤
∣∣Xψ(x0, t)−Xψ(x0, Tε)− vψ∞(x0)(t− Tε)

∣∣+ |Xψ(x0, Tε)|+ vψ∞(x0)Tε

< Cε
√
t+ CTε + bεTε

for t > Tε and Pψ(A ∩ B ∩ C) ≥ Pψ(A) + Pψ(B) + Pψ(B) − 2 for all measurable sets
A,B,C ⊂ R3N , we finally see that
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Pψ
({

x0 ∈ R3N
∣∣ ∣∣Xψ(x0, t)− vψ∞(x0)t

∣∣ < Cε(1 +
√
t), ∀t ≥ 0

})
> 1− ε (3.19)

for some Cε <∞.

Now the idea of the proof is straightforward: If 0 6= vψ∞ lies in CΣ1 × . . . × CΣN , the
“ideal” trajectory vψ∞,lt of the lth particle crosses the surface RΣl at time R

vψ∞,l

. Thus the

“ideal” time of crossing grows linear with the distance R. As does the distance between
the point where vψ∞,lt crosses RΣl and the boundary of RΣl. However, since the difference
between the actual and the “ideal” trajectory grows only sublinear in time, it also grows
sublinear with R, if evaluated at the “ideal” time of crossing. So if R is big enough, the
distance between the point of crossing of the “ideal” trajectory and the boundary of RΣl

is larger than the distance between Xψ
l and vψ∞,lt at the “ideal” time of crossing. Since

the trajectory is continuous in t this implies that Xψ
l crosses RS2 first in RΣl, if and only

if vψ∞,l lies in CΣl (see Figure 3.2). To render this idea more precise, we introduce two
sets MC and M ′

C :

MC :=
{
x0 ∈ R3N | 0 6= vψ∞(x0) ∈ CΣ1 × CΣ2 × . . .× CΣN

}
∩GC

M ′
C :=

{
x0 ∈ R3N | 0 6= vψ∞(x0) ∈

(
CΣ1 × CΣ2 × . . .× CΣN

)c} ∩GC

where

GC :=
{

x0 ∈ R3N
∣∣ ∣∣Xψ(x0, t)− vψ∞(x0)t

∣∣ < C(1 +
√
t) , ∀t ≥ 0

}
and CΣ1 × . . .× CΣN = CΣ1 × . . .×CΣN denotes the closure of CΣ1 × . . .×CΣN . We shall
show that

(i) for all C > 0

x0 ∈MC ⇒ ∃R′ > 0 : Xψ
l (x0, t

Bl,R
ex (x0)) ∈ RΣl ∀R ≥ R′, l ∈ {1, . . . , N} ,

x0 ∈M ′
C ⇒ ∃R′′ > 0, l ∈ {1, . . . , N} : Xψ

l (x0, t
Bl,R
ex (x0)) 6∈ RΣl ∀R ≥ R′′ ,

(ii) for all ε > 0 there exists a Cε <∞ such that

Pψ (MCε) > Pψ
(
vψ∞ ∈ CΣ1 × . . .× CΣN

)
− ε ,

Pψ(M ′
Cε) > 1− Pψ

(
vψ∞ ∈ CΣ1 × . . .× CΣN

)
− ε .

Then, for all ε > 0,

lim
R→∞

Pψ
(
Xψ

l (x0, t
Bl,R
ex (x0)) ∈ RΣl , l = 1, 2, . . . , N

) (i)

≥ Pψ(MCε)

(ii)
> Pψ

(
vψ∞ ∈ CΣ1 × . . .× CΣN

)
− ε

and

lim
R→∞

Pψ
(
Xψ

l (x0, t
Bl,R
ex (x0)) ∈ RΣl ∀l ∈ {1, . . . , N}

)
= 1− lim

R→∞
Pψ
(
∃l ∈ {1, . . . , N} : Xψ

l (x0, t
Bl,R
ex (x0)) 6∈ RΣl

)
(i)

≤ 1− Pψ(M ′
Cε)

(ii)
< Pψ

(
vψ∞ ∈ CΣ1 × . . .× CΣN

)
+ ε ,
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which together gives (3.18).

Now to the proof of (i) and (ii). (ii) is a direct consequence of (3.19) and the fact that
by Theorem 2 (iii) the image measure Pψ

vψ∞
(A) := Pψ(vψ∞ ∈ A) is absolutely continuous

with respect to Lebesgue measure:

Pψ (MCε) > Pψ
(
0 6= vψ∞ ∈ CΣ1 × . . .× CΣN

)
− ε = Pψ

(
vψ∞ ∈ CΣ1 × . . .× CΣN

)
− ε

and

Pψ(M ′
Cε) > Pψ

(
0 6= vψ∞ ∈

(
CΣ1 × . . .× CΣN

)c)− ε = Pψ
(
vψ∞ ∈

(
CΣ1 × . . .× CΣN

)c)− ε

= 1− Pψ
(
vψ∞ ∈ CΣ1 × . . .× CΣN

)
− ε

for some Cε <∞.

Thus we are left with (i). We just prove the first implication. Since(
CΣ1 × CΣ2 × . . .× CΣN

)c
=
(
CS2\Σ1

×CS2× . . .×CS2

)
∪ . . .∪

(
CS2× . . .×CS2×CS2\ΣN

)
and R(S2 \ Σl) ⊂ R(S2 \ Σl) = (RΣl)

c the second implication is in fact a consequence of
the first.

Let x0 ∈ MC and C > 0. We show that for
R′

lΣlX
ψ
l
(x0

, t)

C(1 +
√

ts)

v
ψ
∞,l

(x0)t

v
ψ
∞,l

(x0)ts

δ

Figure 3.2: Real and “ideal” trajectory.

every l ∈ {1, . . . , N} there is an R′
l <∞ such

that Xψ
l (x0, t

Bl,R
ex (x0)) ∈ RΣl for all R ≥ R′

l.
Then (iii) holds with R′ = max{R′

1, . . . , R
′
N}.

Since 0 6= vψ∞,l ∈ CΣl and CΣl is open, there

exists a cone Cl,δ around the axis vψ∞,l with
apex in the origin and apex angle 0 < δ < π
such that Cl,δ ⊂ CΣl . By the definition of

MC the trajectory Xψ
l (x0, t) stays in the ball

around vψ∞,lt with radius C(1 +
√
t). This

ball fits entirely into the cone Cl,δ whenever

vψ∞,l(x)t sin δ > C(1 +
√
t). Obviously the

latter holds for all t big enough, t > ts for
appropriate 0 < ts <∞. So ifR′

l = vψ∞,l(x0)ts
+C(1 +

√
ts), the (continuous!) trajectory

Xψ
l (x0, t) — just like the “ideal” trajectory

vψ∞,lt — leaves the ball BR for the first time
through the surface RΣl for all R ≥ R′

l.More-
over, this clearly happens at a finite time.

Hence, Xψ
l (x0, t

Bl,R
ex (x0)) ∈ RΣl for all R ≥

R′
l and we are done.

�
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3.4.2 Extension to measured statistics

All of the above concerns unmeasured statistics: We did not take into account the effects
a detector in a real life experiment might have on the scattered particles (resp. their wave
function). In N -particle scattering the presence of detectors could affect the exit statistics
in two ways, the first pertaining also to one-particle scattering (N = 1), the second unique
to “real” multi-particle scattering (N ≥ 2).

First, in order to detect anything at all every detector must interact with the scattered
particles, i.e. due to their interaction potential the presence of detectors might change the
time evolution of the scattered particles’ wave function and thus the particles’ trajectories
even before any particle hits a detector (”backscattering“). Second, once one of the scat-
tered particles hits a detector the particles’ wave function will collapse, which (since the
wave function typically is entangled) might result in a change in the remaining particles’
motion.

Regarding the first point one has to argue why the interaction between the detector
and the particle is sufficiently small. In a scattering experiment one is interested in a
good angle resolution, which is proportional to ∆x

R
, where ∆x is the spatial resolution

of the detector and R its distance from the scattering center. Hence, in the scattering
regime, where R tends to infinity, one can achieve microscopic angle resolution with
macroscopic spatial resolution. Macroscopic spatial resolution, however, corresponds to
weak interaction between detector and particle. Here we do not elaborate on this point
but just assume that the detectors are such that we can safely neglect any effects of
backscattering.

Regarding the second point the idea is to prove that the collapse of the scattered
particles’ wave function due to the detection of one particle far away from the scattering
center does not noticeably alter the velocity field of the remaining particles. But then
also the remaining particles’ trajectories stay unchanged, i.e. if one of the remaining par-
ticles hits a detector it does so at the same place and time as it would have if the first
particle hadn’t been detected. And – as before – this second detection does not alter the
trajectories of the still remaining N − 2 particles. So in the end we may conclude that
the measured exit statistics is the same as the unmeasured one.

Elaborating on this idea we proceed as follows. For ease of notation we restrict our-
selves to the case of two particles9. We model the collapse of the particles’s wave function
due to the detection of one particle, which leads to the definition of the particles’ mea-
sured Bohmian trajectories (Definition 6). We prove that, whenever the detectors are
far away from the scattering center, for large times the velocity along a typical measured
(configuration-space) trajectory is close to the asymptotic velocity vψ∞ of the correspond-
ing unmeasured trajectory (Theorem 4). Here corresponding means that the measured
and the unmeasured trajectory start with the same configuration x0. Finally, we show
that the closeness expressed in Theorem 4 suffices to guarantee agreement of the measured
with the unmeasured exit statistics (Theorem 5).

9If the collapse due to one particle’s detection does not alter the exit statistics there is no reason why
the collapse due to a second particle’s detection should. Indeed, the extension of our proof to N ≥ 3 is
mostly evident. Where not we have commented on it.
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In the following let N = 2. Since we neglect backscattering, before any of the two
particles hits a detector surface the particles measured dynamics is the same as the un-
measured one, i.e. at first ψmeasured(x, t) = ψ(x, t) and Xmeasured(x0, t) = Xψ(x0, t). By
TR(x0) denote the time at which the first particle arrives at one of the detector surfaces
(which together cover all of RS2). Say it is the x1-particle that reaches RS2 first. Let
us assume that at TR(x0) the detectors perform an ideal sharp position measurement on
the x1-particle. Since its position at that time is Xψ

1 (x0, T
R(x0)), the outcome of this

measurement will be, of course, Xψ
1 (x0, T

R(x0)). Then the standard calculus of quan-
tum mechanics gives us the following expression for the collapsed wave function of the
x2-particle10:

ψmeasured(x2, T
R(x0)) =

ψ
(
Xψ

1 (x0, T
R(x0)),x2, T

R(x0)
)

∥∥∥ψ (Xψ
1 (x0, TR(x0)), ·, TR(x0)

)∥∥∥
L2(R3

x2
)

resp. (t ≥ TR(x0))

ψmeasured(x2, t) =
e−iH2(t−TR(x0))ψ

(
Xψ

1 (x0, T
R(x0)),x2, T

R(x0)
)

∥∥∥ψ (Xψ
1 (x0, TR(x0)), ·, TR(x0)

)∥∥∥
L2(R3

x2
)

.

Here L2(R3
x2

) is a shorthand notation for L2(R3, d3x2). Thus the x2-particle’s Bohmian
trajectory after the collapse due to the x1-particle’s detection is given by the velocity field

vψ
measured

(x2, t) = Im
∇2e

−iH2(t−TR(x0))ψ
(
Xψ

1 (x0, T
R(x0)),x2, T

R(x0)
)

e−iH2(t−TR(x0))ψ
(
Xψ

1 (x0, TR(x0)),x2, TR(x0)
) .

Regarding the x1-particle’s Bohmian trajectory, since we do not want one and the same
particle to be detected more than once, we assume that the detectors are such that no
detected particle may leave them (think e.g. of a photographic plate or a photomultiplier).
Then we can safely neglect the x1-particle’s evolution after TR(x0). Indeed, we shall
simply truncate it at TR(x0), Xmeasured

1 (x0, t) := Xψ
1 (x0, T

R(x0)) for all t ≥ TR(x0).

Keeping in mind that it might as well have been the x2-particle that was detected
first, with the above considerations we arrive at the following definition for the measured
Bohmian trajectories:

10As mentioned in section 1.2 in Bohmian mechanics the collapse of the wave function in measurement-
like situations is an emerging feature of the theory that holds in an effective sense. See [20] for an extensive
treatment of the emergence out of Bohmian mechanics of the measurement formalism (including operators
as observables) of orthodox quantum mechanics.
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Definition 6. Let V1, V2 ∈ (V )4 and let zero be neither a resonance nor an eigenvalue of

H1, H2. Let ψ ∈ G(2) with ‖ψ‖ = 1.

For every R > 0 and every initial configuration x0 define the time of first measurement

TR(x0) := min{tB1,R
ex (x0), t

B2,R
ex (x0)} (3.20)

where t
Bl,R
ex (x0) is the exit time defined at the beginning of subsection 3.4.1. Further define

the measured (time evolution of the) wave function11 ψ

ψRx0
(x, t) :=



ψ(x, t) = (e−iHtψ)(x) if t < TR(x0)

ψ
(
Xψ

1 (x0, T
R(x0)),x2;T

R(x0), t
)

if t ≥ TR(x0), t
B1,R
ex (x0) < t

B2,R
ex (x0)

ψ
(
x1,X

ψ
2 (x0, T

R(x0)); t, T
R(x0)

)
if t ≥ TR(x0), t

B2,R
ex (x0) < t

B1,R
ex (x0)

ψ
(
Xψ(x0, T

R(x0)), T
R(x0)

)
if t ≥ TR(x0), t

B1,R
ex (x0) = t

B2,R
ex (x0)

where Xψ is the standard Bohmian (configuration-space-)trajectory of the preceding sec-

tions and

ψ(x1,x2; t1, t2) :=
(
e−iH1t1e−iH2t2ψ

)
(x1,x2) .

Finally, the measured Bohmian (configuration-space-)trajectory is defined as the solution

of
d

dt
XR(x0, t) = vψ

R
x0 (XR(x0, t), t), XR(x0, 0) = x0 (3.21)

where the measured Bohmian velocity field is given by

vψ
R
x0 (x, t) = Im

(∇ψRx0
(x, t)

ψRx0
(x, t)

)
.

In particular, for l ∈ {1, 2} such that t
Bl,R
ex (x0) = TR(x0) we have

v
ψRx0
l (XR(x0, t), t) = 0

for all t > TR(x0), i. e.

XR
l (x0, t) = XR

l (x0, T
R(x0))

for all t ≥ TR(x0).

We now formulate our results on the asymptotically classical behavior of the measured
Bohmian trajectories.

11Since the Bohmian velocity field is projective, we neglect any normalization constants. Further, for
ease of notation we write ψRx0

(x, t) even when ψRx0
depends only on x1 or x2.
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Theorem 4. Let V1, V2 ∈ (V )4 and let zero be neither a resonance nor an eigenvalue of

H1, H2. Let ψ ∈ G(2) with ‖ψ‖ = 1. Then:

(i) For all R > 0 the measured trajectories XR(x0, t) exist uniquely and globally in time

for Pψ-almost all initial configurations x0 ∈ R6.

(ii) Let vψ∞(x0) the asymptotic velocity defined in Theorem 2. For R > 0, T > 0 and

C > 0 define x0 to be in VRTC whenever

TR(x0) > T ,∣∣∣vψRx0 (XR(x0, t), t)− vψ∞(x0)
∣∣∣ ≤ C√

t

(3.22)

for all T ≤ t < TR(x0) and

∣∣∣vψRx0
l (XR(x0, t), t)− vψ∞,l(x0)

∣∣∣ ≤ C√
TR(x0)

(3.23)

for all t ≥ TR(x0) and l ∈ {1, 2} such that TR(x0) < t
Bl,R
ex (x0). Then for all ε > 0

there exist T <∞, C <∞ and some RT <∞ such that

Pψ(VRTC) > 1− ε

for all R > RT .

The proof of Theorem 4 can be found in subsection 3.6.1. Note that we choose to
compare the measured velocity vψ

R
x0 directly to the unmeasured asymptotic velocity vψ∞.

Theorem 4 (ii) should be understood as follows: If R is big enough most velocities are
already close to the unmeasured asymptotic ones even before the first particle hits a
detector. Moreover, the rate of convergence is (of course) the same as in the unmeasured
case (equation (3.22)). After the first particle’s detection the remaining particle’s velocity
still converges to an asymptotic one, but to one that might be slightly different, namely

vRl,∞ := lim
t→∞

XR
l

t
. While the convergence rate of the remaining particle’s velocity to this

measured asymptotic velocity vRl,∞ is still of order 1√
t
, the difference between vRl,∞ and the

unmeasured asymptotic velocity vψ∞ is of order 1√
TR(x0)

, which gives equation (3.23).

As in the unmeasured case, if we wish to control the Bohmian velocity field, we
need pointwise estimates on the (gradient of the) relevant wave function ψRx0

, that is on
(∇)ψ(x; t1, t2) (cf. Definition 6). They are collected in
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Lemma 6. Let V1, V2 ∈ (V )4 and let zero be neither a resonance nor an eigenvalue of

H1, H2. Let ψ ∈ G(2). Then for all 0 < a < b < ∞ there exist constants T < ∞ and

C <∞ such that for all t1, t2 ≥ T and a < x1

t1
, x2

t2
< b

|ψ(x; t1, t2)− Φ(x; t1, t2)| ≤ C (t1t2)
− 3

2 (min{t1, t2})−
1
2 ,

|ψ(x; t1, t2)− Φ1/2(x; t1, t2)| ≤ C (t1/2)
−2(t2/1)

− 3
2

(3.24)

and

|∇1/2ψ(x; t1, t2)− i
x1/2

t1/2
Φ1/2(x; t1, t2)| ≤ C (t1/2)

−2(t2/1)
− 3

2 . (3.25)

Here

Φ(x; t1, t2) := (it1)
− 3

2 (it2)
− 3

2 e
i
2

„
x21
t1

+
x22
t2

«
ψ̂out

(
x1

t1
,
x2

t2

)
and

Φ1(x; t1, t2) := (it1)
− 3

2 e
ix21
2t1 (F+,1ψ)

(
x1

t1
,x2; 0, t2

)
,

Φ2(x; t1, t2) := (it2)
− 3

2 e
ix22
2t2 (F+,2ψ)

(
x1,

x2

t2
; t1, 0

)
.

The proof of Lemma 6 can be found in subsection 3.6.3. Note that the collapse
preserves the wave function’s asymptotic local plane wave structure in the degrees of
freedom belonging to the not yet detected particle: Suppose the x1-particle is detected
first. Then for large t the collapsed wave function

ψRx0
(x, t) = ψ

(
Xψ

1 (x0, T
R(x0)),x2;T

R(x0), t
)

is approximately given by the local plane wave

Φ2

(
Xψ

1 (x0, T
R(x0)),x2;T

R(x0), t
)

= (it)−
3
2 e

ix22
2t

(
F+,2ψ

)(
Xψ

1 (x0, T
R(x0)),

x2

t
;TR(x0), 0

)
with an error of order TR(x0)

− 3
2 t−2 (second line of (3.24) and (3.25)). Since at first glance

the appearance of TR(x0)
− 3

2 t−2 in the latter might seem a little bit surprising, we remark
that the leading order term of(

F+,2ψ
)(

Xψ
1 (x0, T

R(x0)),
x2

t
;TR(x0), 0

)
will be given by

(iTR(x0))
− 3

2 e
iX

ψ
1 (x0,T

R(x0))2

2TR(x0) ψ̂out

(Xψ
1 (x0, T

R(x0))

TR(x0)
,

x2

t

)
,

so the former is of order TR(x0)
− 3

2 and thus Φ2

(
Xψ

1 (x0, T
R(x0)),x2;T

R(x0), t
)

is of order

TR(x0)
− 3

2 t−
3
2 .
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Having established the asymptotically classical behavior of the measured Bohmian
trajectories we may now turn to the measured exit statistics (i.e. the exit statistics in the
presence of collapse). As in the unmeasured case we first give a formalized expression
for the (joint) detection probability (3.4): We say that “the lth particle hits a detector
surface RΣl” if and only if XR

l (x0, t
R
l (x0)) ∈ RΣl, where tRl (x0) denotes the time at which

the lth particle first leaves the open ball BR ⊂ R3 (i.e. at which {XR(x0, t), t ≥ 0} first
leaves Bl,R, cf. subsection 3.4.1):

tRl (x0) := inf
{
t ≥ 0 | XR(x0, s) ∈ Bl,R ∀s ∈ [0, t) and XR(x0, t) 6∈ Bl,R

}
,

where we set tRl (x0) = 0 if the above set is empty. Note that for the particle that is
detected first this should and indeed does coincide with the unmeasured first exit time
defined at the beginning of subsection 3.4.1 and thus with the time of first measurement,

tRl (x0) = t
Bl,R
ex (x0) = TR(x0).

Now we can formulate the measured first exit statistics theorem.

Theorem 5. Let V1, V2 ∈ (V )4 and let zero be neither a resonance nor an eigenvalue of

H1, H2. Let ψ ∈ G(2) with ‖ψ‖ = 1. Then:

lim
R→∞

Pψ
({

x0 ∈ R6 | XR
l (x0, t

R
l (x0)) ∈ RΣl ∀l ∈ {1, 2, }

})
=

∫
CΣ1

d3k1

∫
CΣ2

d3k2

∣∣∣ψ̂out(k)
∣∣∣2 . (3.26)

Proof of Theorem 5. The proof is analogous to that of Theorem 3: Because of Theorem
2 (iii) we are done if we can show that

lim
R→∞

Pψ
({

x0 ∈ R6 | XR
l (x0, t

R
l (x0)) ∈ RΣl ∀l ∈ {1, 2, }

})
= Pψ

(
vψ∞,l ∈ CΣl ∀l ∈ {1, 2}

)
.

(3.27)

Using Theorem 4 we see that, analogous to (3.19), for every ε > 0 there is some C <∞
such that

Pψ
(
|XR

l (x0, t)− vψ∞,l(x0)t|<

{
C(1 +

√
t) if 0 ≤ t < TR(x0) ,

C
(
1 + t√

TR(x0)

)
if TR(x0) ≤ t ≤ tRl (x0)

l = 1, 2
)

> 1− ε .

(3.28)
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Then (3.27) follows from (3.28) just as (3.18) followed from (3.19):

Suppose that the x1-particle is detected

RΣ1

RΣ2

X
R
1

(

x0, T
R(x0)

)

X
R
2

(

x0, t
R
2 (x0)

)

C(1+
√

ts)

C(1+
√

ts)

C
(

1+
√

TR(x0)
)

C
(

1+
√

TR(x0)
)

C
(

1+
tR
2

(x0)
√

TR(x0)

)

v
ψ
∞,1(x0)t

v
ψ
∞,2(x0)t

v
ψ
∞,1(x0)ts

v
ψ
∞,2(x0)ts

v
ψ
∞,2(x0)T

R(x0)

v
ψ
∞,2(x0)t

R
2 (x0)

Figure 3.3: Real and “ideal” trajectories of two

measured particles.

first (TR(x0) = t
B1,R
ex (x0) = tR1 (x0)).

Before this first detection both parti-
cles’ real trajectories XR

l are contained
in moving balls BC(1+

√
t)(v

ψ
∞,lt) around

the ”ideal“ trajectories vψ∞,lt with ra-
dius growing sub-linear in time. Since
the distance between the ”ideal“ trajec-
tories vψ∞,lt and the boundary of CΣl

grows linear in time, this means that
for times t big enough, t > ts for some
appropriate 0 < ts < ∞, both balls
BC(1+

√
t)(v

ψ
∞,1t) and BC(1+

√
t)(v

ψ
∞,2t)

will be contained entirely in the cones
CΣ1 and CΣ2 , respectively. For R and
thus TR(x0) big enough we may choose
ts < TR(x0) and thus guarantee that
the x1-particle (i.e. the first particle to
be detected) reaches RS2 while
contained in the cone CΣ1 , i.e. some-
where in RΣ1. Now, after the detection
of the x1-particle (i.e. for t ≥ TR(x0))
the moving ball’s radius that contains
the x2-particle’s real trajectory XR

2

may grow linear in time. However, since
this ball already was contained in CΣ2

at time TR(x0) (and the distance be-
tween the ”ideal“ trajectory vψ∞,2t and
the boundary of CΣ2 of course still grows
linear in time) it will nevertheless stay
contained in CΣ2 . Thus also the x2-
particle will reach RS2 somewhere in
RΣ2 (cf. Figure 3.3). �

3.5 Outlook

With Theorems 3 and 5 we have presented results on the exit statistics of N non-
interacting particles. For an extension to interacting particles one needs detailed estimates
on generalized eigenfunctions also for potentials with interaction terms. Remember that
the fundamental Theorems 2 and 4 about the asymptotic classicality of the Bohmian tra-
jectories rely heavily on the detailed estimates of Lemmas 5 and 6, respectively, which in
turn are based on the method of expansion in generalized eigenfunctions. However, while
there are results about generalized eigenfunctions in higher dimensions (see e.g. [1, 35, 40])
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they hold only for potentials with sufficiently rapid decay at infinity. And potentials with
interacting terms do not fall off at infinity in certain directions: A typical potential for
a pair of interacting particles is of the form V (x) = V (x1 − x2) which does not fall off
at all on the “diagonal” x1 ≈ x2. However, at least for repulsive potentials one should
be able to show that the absent fall off on the diagonal is negligible in some appropriate
sense. After all, when the particles repulse each other, their wave function will typically
be concentrated away from the diagonal. Thus one could probably approximate the actual
potential by truncated potentials that decay also on the diagonal, i.e. for which the ex-
isting results about generalized eigenfunctions become applicable. But beware: The exit
statistics is a statement about trajectories, not a L2 statement for which one could apply
“dense-in-L2” arguments. So one would have to be very careful about the appropriate
sense of convergence in which the truncated potentials approximate the actual one.

3.6 Asymptotic behavior of Bohmian trajectories:

Proofs

The goal of this section is the proof of Theorems 2 and 4. In subsection 3.6.1 we present
the main body of the proof using the pointwise estimates on (∇)ψ given in Lemmas 5 and
6, respectively. In subsection 3.6.2 we list the properties of the generalized eigenfunctions
we use in subsection 3.6.3 to finally prove Lemmas 5 and 6.

3.6.1 Proof of Theorems 2 and 4

Since the standard Bohmian trajectories Xψ and the measured ones XR are closely
related, we merge the proofs of Theorems 2 and 4 to avoid repetitions. Rather we split the
proof into that of Theorem 2 (i) and 4 (i) (Pψ-almost sure global existence and uniqueness
of Xψ resp. XR) and that of Theorem 2 (ii), (iii) and Theorem 4 (ii) (asymptotically
classical behavior of Xψ resp. XR).

Proof of Theorem 2 (i) and 4 (i). Theorem 2 (i), i.e. Pψ-almost sure global existence
and uniqueness of Xψ(x0, t), is a direct consequence Proposition 1. Regarding Theorem
4 (i) note that ψRx0

(x, t) = ψ(x, t) for t < TR(x0) implies XR(x0, t) = Xψ(x0, t) for

t ≤ TR(x0). Moreover, since t
Bl,R
ex (l = 1, 2) are well defined random variables on the space

of initial configurations x0 (cf. subsection 3.4.1), so is TR(x0) = min{tB1,R
ex (x0), t

B2,R
ex (x0)}.

Thus we already have that for Pψ-almost all x0 XR(x0, t) is well defined up to (the also
well defined) time TR(x0) and our task really is to extend this to times t > TR(x0).

Split the set of ”good“ initial configurations for the standard Bohmian dynamics,

Gψ : = {x0 ∈ R6 | Xψ(x0, t) exists and is unique for all t ∈ R}
⊂ {x0 ∈ R6 | XR(x0, t) exists and is unique for all t ≤ TR(x0)} ,
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into the three disjoint subsets

DR
1 : = {x0 ∈ Gψ | TR(x0) = tB1,R

ex (x0) < tB2,R
ex (x0)} ,

DR
2 : = {x0 ∈ Gψ | TR(x0) = tB2,R

ex (x0) < tB1,R
ex (x0)} ,

DR
12 : = {x0 ∈ Gψ | TR(x0) = tB1,R

ex (x0) = tB2,R
ex (x0)}

and denote by GR the set of ”good“ initial configurations for the measured dynamics, i.e.

GR := {x0 ∈ R6 | XR(x0, t) exists and is unique for all t ∈ R} .

We shall show

Pψ(DR
12) = 0 (3.29)

and

Pψ(DR
1 ∩ GR) = Pψ(DR

1 ) , Pψ(DR
2 ∩ GR) = Pψ(DR

2 ) . (3.30)

Then

Pψ(GR) ≥ Pψ(DR
1 ∩ GR) + Pψ(DR

2 ∩ GR) = Pψ(DR
1 ) + Pψ(DR

2 ) + Pψ(DR
12) = Pψ(Gψ) = 1 ,

i.e. we have Pψ-almost sure global existence and uniqueness of the measured dynamics,
Pψ(GR) = 1.

First, suppose both particles arrive at the detectors at the same time, i.e. x0 ∈ DR
12.

Since XR
l (x0, t

Bl,R
ex (x0)) = Xψ

l (x0, t
Bl,R
ex (x0)) = R we have

DR
12 ⊂ D̃R

12 := {x0 ∈ Gψ | Xψ
1 (x0, t) = R = Xψ

2 (x0, t) for some t ∈ R} .

D̃R
12, however, clearly (is contained in a submanifold of R6 that) has at least codimension

one, i.e. D̃R
12 and thus DR

12 has Lebesgue measure zero. Since Pψ is absolutely continuous
with respect to Lebesgue measure this gives (3.29): Pψ(DR

12) = 0.

We remark that by Definition 6 x0 ∈ DR
12 entails XR(x0, t) = XR(x0, T

R(x0)) for all
t > TR(x0), that is we trivially have DR

12 ⊂ GR and thus

Pψ(DR
12 ∩ GR) = Pψ(DR

12) . (3.29’)

This, together with (3.30), of course also gives Pψ(GR) = 1 and one might wonder why
we use (3.29) instead of the trivial (3.29’). The reason is that in the case of more than
two scattered particles (N > 2) (3.29) easily generalizes to

Pψ({x0 ∈ Gψ ⊂ R3N | TR(x0) = t
Bl,R
ex (x0) for at least two different l = 1, 2, . . . , N}) = 0 .

While this, together with the higher dimensional analogue of (3.30), does still suffice to
get Pψ(GR) = 1, the analogue of (3.29’),

Pψ({x0 ∈ Gψ | TR(x0) = t
Bl,R
ex (x0) for all l = 1, 2, . . . , N} ∩ GR)

= Pψ({x0 ∈ Gψ | TR(x0) = t
Bl,R
ex (x0) for all l = 1, 2, . . . , N}) ,
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does not.

Now, suppose that x0 ∈ DR
1 , i.e. the x1-particle arrives at the detectors before the x2-

particle12. By Definition 6 this entails XR
1 (x0, t) = XR

1 (x0, T
R(x0)) for all t > TR(x0),

i.e. we only need to ensure that XR
2 (x0, t) is well defined for t > TR(x0). Then the

x2-particle’s dynamics for t ≥ TR(x0) (as defined in Definition 6) is actually a standard
Bohmian one-particle dynamics: Write

ψX1,T (y, τ) :=
(
e−iH2τψX1,T

)
(y) , ψX1,T (y) :=

ψ(X1,y, T )

‖ψ(X1, ·, T )‖L2(R3
y)

.

Setting T = TR(x0) and X1 = XR
1 (x0, T ) this yields (t ≥ T )

XR
2 (x0, t) = Y ψX1,T (XR

2 (x0, T ), t− T ) (3.31)

where Y ψX1,T is the solution of the one-particle Bohmian equation of motion

d

dτ
Y ψX1,T (y0, τ) = vψX1,T (Y ψX1,T (y0, τ), τ),

vψX1,T (y, τ) = Im

(
∇yψX1,T (y, τ)

ψX1,T (y, τ)

)
, Y ψX1,T (y0, 0) = y0 .

(3.32)

Note however, that the guiding wave function ψX1,T = ψXR
1 (x0,TR(x0)),TR(x0) and thus also

the Bohmian dynamics (3.32) is random. So first of all we need to show that ψ ∈ G(2) is
sufficiently regular such that x0 ∈ DR

1 yields ψXR
1 (x0,TR(x0)),TR(x0) for which the dynamics

(3.32) is reasonably well defined. In fact we shall show that

(a) ψ ∈ G(2) implies ψX1,T ∈ C∞(H2) ⊂ L2(R3
y) for all X1 ∈ R3, T ∈ R

which again by Proposition 1 gives PψX1,T -almost sure global existence and uniqueness
of the Bohmian dynamics (3.32). But also the initial position y0 = XR

2 (x0, T
R(x0)) is

random, that is we need to show even more, namely that (at least Pψ-almost) all x0 ∈ DR
1

lead to y0 = XR
2 (x0, T

R(x0)) in the set of ”good“ initial positions (T = TR(x0), X1 =
XR

1 (x0, T ))

GψX1,T := {y0 ∈ R3 | Y ψX1,T (y0, τ) exists and is unique for all τ ∈ R}

of the random dynamics (3.32). Indeed, with the help of (a) we shall show

(b) Pψ
({

x0 ∈ DR
1 | XR

2 (x0, T
R(x0)) ∈ G

ψ
XR

1 (x0,T
R(x0)),TR(x0)

})
= Pψ(DR

1 ).

By (3.31) this then immediately implies

Pψ
({

x0 ∈ DR
1 | XR

2 (x0, t) exists and is unique for all t > TR(x0)
})

= Pψ(DR
1 )

and thus

Pψ(DR
1 ∩ GR) = Pψ(DR

1 ) .

Thus we are left with the proof of (a) and (b). We start with (a). Let ψ ∈ G(2). Then,
for any T ∈ R, also ψ(·, T ) ∈ G(2), i.e. it suffices to show that

12Since the reverse case, x0 ∈ DR
2 , is completely analogous we do not treat it separately.
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ψ ∈ G(2) implies ψX1 := ψX1,0 = ψ(X1, ·) ∈ C∞(H2) for all X1 ∈ R3.

This is most readily proved using the spectral theorem. More precisely, since G(2) ⊂ Hs(H)
∼= Ha.c.(H1) ⊗ Ha.c.(H2), we may use the explicit diagonalization of H1/2 on Ha.c.(H1/2)

resp. H on Hs(H) given by the generalized Fourier transform F+,1/2 resp. F (2)
+ defined in

subsection 3.6.2 (cf. Proposition 4 (iv) resp. equation (3.55)):

H1/2

∣∣
Ha.c.(H1/2)

= F−1
+,1/2

k2
1/2

2
F+,1/2

H
∣∣
Hs(H)

=
(
F (2)

+

)−1 k2

2
F (2)

+ .

(3.33)

Then ψX1 ∈ C∞(H2) if and only if
(
k2
2

2

)n
F+,2ψX1 ∈ L2(R3

k2
), i.e. if and only if ϕn(X1, ·) :=

Hn
2 ψX1 = F−1

+,2

(
k2
2

2

)n
F+,2ψX1 ∈ L2(R3

x2
) for all n ∈ N.

Let n ∈ N. Since G(2) ⊂ C∞(H) and F (2)
+ = F+,1F+,2 (3.33) gives13

∥∥H1ϕn
∥∥
L2(R6

x)
=
∥∥∥k2

1

2
F+,1F−1

+,2

(
k2

2

2

)n
F+,2ψ

∥∥∥
L2(R3

k1
×R3

x2
)
=
∥∥∥k2

1

2

(
k2

2

2

)n
F (2)

+ ψ
∥∥∥
L2(R6

k)

≤
∥∥∥(k2

2

)n+1

F (2)
+ ψ

∥∥∥
L2(R6

k)
=
∥∥Hn+1ψ

∥∥
L2(R6

x)
<∞ .

(3.34)

Since ‖H1ϕn‖2
L2(R6

x)
=
∫
R3

‖(H1ϕn)(·,x2)‖2
L2(R3

x1
)d

3x2 this implies ‖(H1ϕn)(·,x2)‖L2(R3
x1

)

<∞ for almost every (with respect to Lebesgue measure) x2 ∈ R3 and thus

ϕn(·,x2) ∈ D(H1) = D(H0,1) = W 2(R3
x1

) for a. e. x2 ∈ R3 .

Thus we can apply an instance of Gagliardo-Nirenberg inequality [23, 31] (seealso the
proof of Lemma 3 in subsection 2.4.3), namely

‖u‖L∞(R3) ≤ C‖D2u‖
3
4

L2(R3)‖u‖
1
4

L2(R3)

with ‖Dmu‖L2(R3) := max
|α|=m

‖Dαu‖L2(R3) and C <∞ independent of u ∈ W 2(R3), to get

‖ϕn(·,x2)‖L∞(R3
x1

) ≤ C‖D2
x1
ϕn(·,x2)‖

3
4

L2(R3
x1

)‖ϕn(·,x2)‖
1
4

L2(R3
x1

) for a. e. x2 ∈ R3 .

13We abuse notation and do not distinguish between, say, H2 defined on L2(R3
x2

) and H2 (1 ⊗ H2)
defined on L2(R6) (L2(R3

x1
)⊗ L2(R3

x2
)).
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Then, using Hölder in the second to last step,

‖ϕn(X1, ·)‖2
L2(R3

x2
) =

∫
R3

|ϕn(X1,x2)|2d3x2 ≤
∫
R3

‖ϕn(·,x2)‖2
L∞(R3

x1
)d

3x2

≤ C2

∫
R3

‖D2
x1
ϕn(·,x2)‖

3
2

L2(R3
x1

)‖ϕn(·,x2)‖
1
2

L2(R3
x1

)d
3x2

≤ C2

∫
R3

‖D2
x1
ϕn(·,x2)‖

3
2
· 4
3

L2(R3
x1

)d
3x2

 3
4
∫

R3

‖ϕn(·,x2)‖
1
2
·4

L2(R3
x1

)d
3x2

 1
4

≤ C2‖D2ϕn‖
3
2

L2(R6
x)
‖ϕn‖

1
2

L2(R6
x)

for every X1 ∈ R3. Moreover, since analog to (3.34) ‖Hϕn‖L2(R6
x)

< ∞, i.e.
ϕn ∈ D(H) = D(H0) = W 2(R6), the last term is finite, i.e. we have just shown that
indeed ϕn(X1, ·) ∈ L2(R3

x2
) for arbitrary X1 ∈ R3 and n ∈ N.

Note that, like Sobolev inequalities Gagliardo-Nirenberg inequalities depend on the
dimension of the space the functions to be estimated are defined on, so one might worry
wether this makes our argument void for N > 2. However, since we apply Gagliardo-
Nirenberg to ϕn(·,x2) : R3 → C only, this is not the case: Also the higher dimensional
analogue ϕn(·,x2, . . . ,xn) is a function on R3.

We turn to the proof of (b). Let

GR
2 :=

{
x0 ∈ Gψ | Xψ

2 (x0, T
R(x0)) ∈ G

ψ
XR

1 (x0,T
R(x0)),TR(x0)

}
.

Since P(A) = 1 implies14 P(A ∩ B) = P(B) for any measurable sets A,B and
XR

2 (x0, T
R(x0)) = Xψ

2 (x0, T
R(x0)) we get (b) if we can show that

Pψ(GR
2 ) = 1 . (3.35)

By the definition of conditional probability15

Pψ(GR
2 ) =

∫
R3×[0,∞)

Pψ
(
GR

2 |
(
Xψ

1 (·, TR), TR
)

= (x1, T )
)

Pψ
(Xψ

1 (·,TR),TR)
(d3x1dT )

=

∫
R3×[0,∞)

Pψ
(
Xψ

2 (·, T ) ∈ Gψx1,T |
(
Xψ

1 (·, T ), TR
)

= (x1, T )
)

Pψ
(Xψ

1 (·,TR),TR)
(d3x1dT )

(3.36)

where, for any random variable or vector Y and measurable set A,

PY (A) := P(Y ∈ A) := P({ω | Y (ω) ∈ A}) .

14P(B) ≥ P(A ∩ B) is trivial and thus P(B) = 1 − P(Bc) ≤ P(A) − P(A ∩ Bc) = P(A ∩ B) implies
P(A ∩B) = P(B).

15We follow [9], where, however, the image measure PY is denoted P̂.
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Let Φψ
t,t0 denote the flow map of (1.2), i.e. Φψ

t,t0(X
ψ(x0, t0)) = Xψ(x0, t) and in particular

Φψ
t,0(x0) = Xψ(x0, t) (cf. section 1.2). We shall show that (A ⊂ R6 measurable)

Pψ(A | Y = y) = Pψ(·,T )
(
Φψ
T,0(A) | Y ◦ Φψ

0,T = y
)

(3.37)

for all T ∈ R and (A ⊂ R3 measurable)

Pψ (X2 ∈ A | (X1, Y ) = (x1, y)) = Pψx1 (A | Y (x1, ·) = y) (3.38)

where the random vectors X l are given by X l(x) = X l(x1,x2) := xl and, as before,

ψx1(x2) = ψ(x1,x2)
‖ψ(x1,·)‖L2(R3

x2
)
. Then

Pψ
(
Xψ

2 (·, T ) ∈ Gψx1,T |
(
Xψ

1 (·, T ), TR
)

= (x1, T )
)

(3.37)
= Pψ(·,T )

(
X2 ∈ Gψx1,T |

(
X1, T

R ◦ Φψ
0,T

)
= (x1, T )

)
(3.38)
= Pψx1,T

(
Gψx1,T |

(
TR ◦ Φψ

0,T

)
(x1, ·) = T

)
.

Since, however, P(A) = 1 implies16 P(A | Y = y) = 1 (for any random variable or vector
Y ), with (a) this gives

Pψ
(
Xψ

2 (·, T ) ∈ Gψx1,T |
(
Xψ

1 (·, T ), TR
)

= (x1, T )
)

= 1 .

Put into (3.36) this yields (3.35),

Pψ(GR
2 ) =

∫
R3×[0,∞)

Pψ
(Xψ

1 (·,TR),TR)
(d3x1dT ) = 1 ,

and we are left to prove (3.37) and (3.38).

The proof of (3.37) is standard. Recall that by definition every measurable function
ϕ(y) with

∫
B

ϕ(y)PψY (dy) = Pψ(A, Y ∈ B) for every measurable B is a version of Pψ(A |

Y = y). Using equivariance, i.e. Pψ = Pψ(·,T ) ◦ Φψ
T,0 (cf. equation (1.4)), and

(
Φψ
T,0

)−1
=

Φψ
0,T we get

PψY (B) = Pψ ({x | Y (x) ∈ B}) = Pψ(·,T )
({

x | Y
(
Φψ

0,T (x)
)
∈ B

})
= Pψ(·,T )

Y ◦Φψ0,T
(B)

and hence (using equivariance once more in the last step)∫
B

Pψ(·,T )
(
Φψ
T,0(A) | Y ◦ Φψ

0,T = y
)

PψY (dy)

=

∫
B

Pψ(·,T )
(
Φψ
T,0(A) | Y ◦ Φψ

0,T = y
)

Pψ(·,T )

Y ◦Φψ0,T
(dy) = Pψ(·,T )

(
Φψ
T,0(A), Y ◦ Φψ

0,T ∈ B
)

= Pψ(·,T )
(
Φψ
T,0 (A ∩ {x | Y (x) ∈ B})

)
= Pψ(A, Y ∈ B) .

16Since P(A) = 1, we have P(A, Y ∈ B) = P(Y ∈ B) =
∫
B

PY (dy), i.e. P(A | Y = y) = 1.
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We turn to the proof of (3.38). Note that (relative to Lesbegue measure) Pψ (Pψx1 ) has

got the density |ψ(x)|2 (|ψx1(x2)|2 = |ψ(x1,x2)|2
‖ψ(x1,·)‖2

L2(R3
x2

)

). Then, by Fubini,

Pψ(X1,Y )(B × C) =

∫
{x|x1∈B,Y (x)∈C}

|ψ(x)|2d6x =

∫
B

d3x1 ‖ψ(x1, ·)‖2
L2(R3

x2
)

∫
{x2|Y (x1,x2)∈C}

d3x2 |ψx1(x2)|2

=

∫
B

d3x1 ‖ψ(x1, ·)‖2
L2(R3

x2
)P

ψx1

Y (x1,·)(C) ,

i.e.

Pψ(X1,Y )(d
3x1dy) = ‖ψ(x1, ·)‖2

L2(R3
x2

)P
ψx1

Y (x1,·)(dy)d
3x1 .

Thus (once more using Fubini)∫
D

Pψx1 (A | Y (x1, ·) = y)Pψ(X1,Y )(d
3x1dy)

=

∫
R3

d3x1 ‖ψ(x1, ·)‖2
L2(R3

x2
)

∫
{x2|(x1,Y (x1,x2))∈D}

Pψx1 (A | Y (x1, ·) = y)Pψx1

Y (x1,·)(dy)

=

∫
R3

d3x1 ‖ψ(x1, ·)‖2
L2(R3

x2
)P

ψx1 (A, Y (x1, ·) ∈ {y | (x1, y) ∈ D})

=

∫
R3

d3x1 ‖ψ(x1, ·)‖2
L2(R3

x2
)

∫
{x2∈A|(x1,Y (x1,x2))∈D}

d3x2 |ψx1(x2)|2

=

∫
{x|x2∈A,(x1,Y (x))∈D}

|ψ(x)|2d6x = Pψ (X2 ∈ A, (X1, Y ) ∈ D) ,

i.e. we get (3.38). �

Proof of Theorem 2 (ii), (iii) and Theorem 4 (ii). The proof is analogous to that
of Theorem 1 in [34] (the corresponding result for the unmeasured case with N = 1). By
comparison we see that Theorem 2 (ii), (iii) and Theorem 4 (ii) hold if we can show that
the following three conditions are satisfied:

(I) Pointwise estimates of ψ and ∇ψ:

Lemmas 5 and 6 hold.

(II) L2-estimates of ψ:
lim
t→∞

‖ψ(·, t)− Φ(·, t)‖ = 0 . (3.39)

(III) Regularity of ψ̂out:

ψ̂out(k) is continuous and bounded for k 6∈ N . (3.40)



62 CHAPTER 3. DETECTION STATISTICS

For a better understanding we sketch the main steps of the proof and explain how
conditions (I) to (III) enter into it. Note that in the following x0, Xψ, k and vψ

might be both in R3N for general N (whenever we prove assertions of Theorem 2) and in
R6 = R3N for N = 2 (whenever we prove assertions of Theorem 4).

Condition (I) gives estimates for vψ(x, t) and vψx1,t1 (x2, t2) resp. vψx2,t2 (x1, t1): For
δ1 > 0 and 0 < a < b <∞ define

Bδ1ab := {k| |ψ̂out(k)| > δ1 and a < kl < b , l = 1, 2, . . . , N} .

Then there exist T <∞, C <∞ such that for all t, t1, t2 ≥ T and x
t
,
(

x1

t1
, x2

t2

)
∈ Bδ1ab∣∣∣vψ(x, t)− x

t

∣∣∣ =
∣∣∣Im(∇ψ(x, t)− ix

t
ψ(x, t)

ψ(x, t)

) ∣∣∣
≤
∣∣∇ψ(x, t)− ix

t
Φ(x, t)

∣∣+ x
t
|ψ(x, t)− Φ(x, t)|

|Φ(x, t)| − |ψ(x, t)− Φ(x, t)|
Lemma 5

≤
C ′ (1 + x

t

)
t−

3N+1
2

t−
3N
2 |ψ̂out(

x
t
)| − C ′t−

3N+1
2

≤ Ct−
1
2 ,

∣∣∣vψx1,t1 (x2, t2)−
x2

t2

∣∣∣ =
∣∣∣Im(∇2ψ(x; t1, t2)− ix2

t2
ψ(x; t1, t2)

ψ(x; t1, t2)

) ∣∣∣ Lemma 6

≤ Ct
− 1

2
1 ,∣∣∣vψx2,t2 (x1, t1)−

x1

t1

∣∣∣ Lemma 6

≤ Ct
− 1

2
2 .

(3.41)

The latter two are of interest since for t > TR(x0) the measured velocity field v
ψRx0
1/2 (x, t)

is either identically zero (if TR(x0) = t
B1/2,R
ex (x0)) or equal to v

ψX2/1,T (x1/2, t) (if TR(x0)

< t
B1/2,R
ex (x0) and with T = TR(x0), X2/1 = Xψ

2/1(x0, T )). Now let δ2 > 0 and define (Bδ2

denotes the open ball with radius δ2)

Bδ1δ2ab : = {k ∈ Bδ1ab | Bδ2(k) ⊂ Bδ1ab} ,

Gψ
δ1δ2ab

(T ) : =
{

x0 |
Xψ(x0, T )

T
∈ Bδ1δ2ab

}
,

GR
δ1δ2ab

(T ) : = Gψ
δ1δ2ab

(T ) ∩ {x0 | TR(x0) ≥ T} .

Then, for T big enough, Gψ
δ1δ2ab

(T ) resp. GR
δ1δ2ab

(T ) is a set of ”good“ initial configurations

in the sense that x0 ∈ Gψ
δ1δ2ab

(T ) resp. x0 ∈ GR
δ1δ2ab

(T ) implies that

vψ∞(x0) exists and |vψ
(
Xψ(x0, t), t

)
− vψ∞(x0)| ≤ Ct−

1
2 for all t ≥ T and some

C <∞

resp.

vψ∞(x0) exists and x0 ∈ VRTC for some C <∞, i.e.

TR(x0) > T,

|vψRx0 (XR(x0, t), t)− vψ∞(x0)| ≤ C√
t

for all T ≤ t ≤ TR(x0) and

|vψ
R
x0

l (XR(x0, t), t)− vψ∞,l(x0)| ≤ C√
TR(x0)

for all t > TR(x0)

and l = 1, 2 s. t. TR(x0) < t
Bl,R
ex (x0).



3.6. BOHMIAN TRAJECTORIES: PROOF 63

Since the above implications are the crucial parts of the respective proofs we elab-
orate on them. First, let x0 ∈ Gψ

δ1δ2ab
(T ). Note that (3.41) (first equality) implies

that
(

Xψ(x0,t)
t

)
t≥T

is Cauchy as long as it stays in Bδ1ab: For T ≤ t1 < t2 such that

Xψ(x0,s)
s

∈ Bδ1ab for all t1 ≤ s < t2

∣∣∣Xψ(x0, t1)

t1
− Xψ(x0, t2)

t2

∣∣∣ ≤ t2∫
t1

∣∣∣ d
ds

Xψ(x0, s)

s

∣∣∣ds
≤

t2∫
t1

1

s

∣∣∣vψ (Xψ(x0, s), s
)
− Xψ(x0, s)

s

∣∣∣ds
(3.41)

≤ C

t2∫
t1

s−
3
2ds ≤ 2Ct

− 1
2

1 ≤ 2CT−
1
2 .

(3.42)

Since Xψ(x0,t)
t

is continuous in t this in particular implies that, whenever T is big enough,

|X
ψ(x0,T )
T

− Xψ(x0,t)
t

| < δ2, i.e. Xψ(x0,t)
t

stays in Bδ2(
Xψ(x0,T )

T
) ⊂ Bδ1ab for all t ≥ T . Thus

(3.42) holds in fact for all t2 > t1 ≥ T and vψ∞(x0) = lim
t→∞

Xψ(x0,t)
t

exists. Moreover, using

(3.41) and (3.42),∣∣∣vψ (Xψ(x0, t), t
)
− vψ∞(x0)

∣∣∣
≤
∣∣∣vψ(Xψ(x0, t), t

)
− Xψ(x0, t)

t

∣∣∣+ lim
s→∞

∣∣∣∣Xψ(x0, t)

t
− Xψ(x0, s)

s

∣∣∣∣
≤ 3Ct−

1
2

(3.43)

for all t ≥ T .

Now let x0 ∈ GR
δ1δ2ab

(T ) (with the same T as before). Then vψ∞(x0) exists and, since

for t ≤ TR(x0) vψ
R
x0 (XR(x0, t), t) = vψ(Xψ(x0, t), t), (3.43) already gives∣∣∣vψRx0 (XR(x0, t), t)− vψ∞(x0)

∣∣∣ ≤ 3Ct−
1
2

for all T ≤ t ≤ TR(x0). Without loss of generality assume that TR(x0) = t
B1,R
ex (x0)

< t
B2,R
ex (x0). Then v

ψRx0
2 (XR(x0, t), t) = v

ψ
X
ψ
1 (x0,T

R(x0)),TR(x0)(XR
2 (x0, t), t) for t ≥ TR(x0)

and (3.41) (second equality) implies that
(

XR
2 (x0,t)

t

)
t≥TR(x0)

is Cauchy as long as(
XR

1

(
x0,TR(x0)

)
TR(x0)

,
XR

2 (x0,t)

t

)
=
(

Xψ
1 (x0,TR(x0))

TR(x0)
,

XR
2 (x0,t)

t

)
stays in Bδ1ab: For T ≤ t1 < t2 such

that
(

XR
1

(
x0,TR(x0)

)
TR(x0)

,
XR

2 (x0,t)

t

)
∈ Bδ1ab for all t1 ≤ s < t2

∣∣∣XR
2 (x0, t1)

t1
− XR

2 (x0, t2)

t2

∣∣∣ ≤ 2Ct
− 1

2
1 ≤ 2CT−

1
2 . (3.44)
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But then (by(3.42) and (3.44))∣∣∣(Xψ
1 (x0, T

R(x0))

TR(x0)
,
XR

2 (x0, t)

t

)
− Xψ(x0, T )

T

∣∣∣
≤
∣∣∣Xψ(x0, T

R(x0))

TR(x0)
− Xψ(x0, T )

T

∣∣∣+ ∣∣∣XR
2 (x0, t)

t
− XR

2 (x0, T
R(x0))

TR(x0)

∣∣∣
≤2CT−

1
2 < δ2 ,

i.e. also
(

Xψ
1 (x0,TR(x0))

TR(x0)
,

XR
2 (x0,t)

t

)
stays in Bδ2(

Xψ(x0,T )
T

) ⊂ Bδ1δ2ab and (3.44) holds in fact

for all t2 > t1 > TR(x0)(≥ T ). Thus by (3.41), (3.42) and (3.44)∣∣∣vψRx0
2 (XR(x0, t), t)− vψ∞,2(x0)

∣∣∣
≤
∣∣∣vψX

ψ
1 (x0,T

R(x0)),TR(x0)(XR
2 (x0, t), t)−

XR
2 (x0, t)

t

∣∣∣+ ∣∣∣XR
2 (x0, t)

t
− XR

2 (x0, T
R(x0))

TR(x0)

∣∣∣
+ lim

s→∞

∣∣∣XR
2 (x0, T

R(x0))

TR(x0)
− XR

2 (x0, s)

s

∣∣∣ ≤ 5C(TR(x0))
− 1

2

for all t > TR(x0), i.e. x0 ∈ VRTC .

So we get Theorem 2 (ii) (Theorem 4 (ii)), if we can adjust δ1, δ2, a, b and T (δ1, δ2, a,
b, T and R) such that the set of ”good“ initial configurations Gψ

δ1δ2ab
(T ) (GR

δ1δ2ab
(T )) has

(nearly) full measure. Let ε > 0. By condition (II) and equivariance one easily sees that
for any T > 0 big enough

Pψ
(

Xψ(x0, T )

T
∈ A

)
= Pψ(·,T )

(x

T
∈ A

)
≥ PΦ(·,T )

(x

T
∈ A

)
− ε

=

∫
A

|ψ̂out(k)|2d3Nk − ε
(3.45)

for any measurable A ⊂ R3N . Moreover, condition (III) guarantees∫
Bδ1δ2ab

|ψ̂out(k)|2d3Nk > 1− ε (3.46)

for δ1, δ2, a small and b big enough (cf. proof of Theorem 1 in [34])17. In particular,
(3.45) and (3.46) show that there are δ1 > 0, δ2 > 0, 0 < a < b < ∞ and T < ∞ such
that

Pψ
(
Gψ
δ1δ2ab

(T )
)

= Pψ
(Xψ(x0, T )

T
∈ Bδ1δ2ab

)
> 1− 2ε ,

i.e. Theorem 2 (ii) holds. Now note that global existence of Bohmian mechanics guarantees
that Pψ-almost no trajectory reaches spatial infinity in finite time. Thus in particular there

17Note that the choice of δ1, δ2, a, b does evidently not depend on T. This is important since above we
choose T such thatGψδ1δ2ab(T ) andGRδ1δ2ab(T ) contained ”good“ initial configurations for given δ1, δ2, a, b.
This is a point we failed to observe in the proof of Theorem 1 in [34].
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is some RT <∞ such that

Pψ({x0 | TR(x0) ≥ T}) ≥ Pψ
({

x0 | sup
0≤t≤T

∣∣Xψ(x0, t)
∣∣ ≤ R

})
> 1− ε

for all R > RT . Since GR
δ1δ2ab

(T ) = Gψ
δ1δ2ab

(T ) ∩ {x0 | TR(x0) ≥ T} this gives

Pψ(GR
δ1δ2ab

(T )) > 1− 3ε

for all R > RT , i.e. we get Theorem 4 (ii).

Finally, looking once more at (3.45), we see that also Theorem 2 (iii) holds:

Pψ(vψ∞ ∈ A) = lim
t→∞

Pψ
(

Xψ(x0, t)

t
∈ A

)
=

∫
A

|ψ̂out(k)|2d3Nk

Now to the proof of conditions (I) to (III). Condition (I), i.e. Lemmas 5 and 6, will
be proved in subsection 3.6.3. Condition (II) is a standard result, which follows from (3.10)
(i.e.
lim
t→∞

‖e−iHtψ − e−iH0tψout‖ = 0) and

lim
t→∞

∥∥e−iH0tψout − Φ(·, t)
∥∥ = 0

for all ψout ∈ L2(R3N) (see e.g. [14] or [32], Theorem IX.31). Finally, condition (III) is a
consequence of ψ ∈ G(N). For a proof see the mapping Lemma 10 at the end of subsection
3.6.3. �

3.6.2 Properties of generalized eigenfunctions

As explained in section 3.3 we shall use the method of expansion in generalized eigen-
functions to prove Lemmas 5 and 6, i.e. to get the pointwise estimates on (∇)ψ needed

to control the standard resp. the measured Bohmian velocity field vψ resp. vψ
R
x0 . In this

Subsection we have collected the relevant properties of the generalized eigenfunctions.
We first recall some standard [27] and some new [18, 37] results concerning generalized
eigenfunctions in the single particle case. We then extend those results to the case of N
particles.

Let N = 1. One looks for generalized eigenfunctions ϕ± that diagonalize (the single
particle) Hamiltonian H (and thus the time evolution e−iHt) on Ha.c.(H):

(−1

2
∆ + V (x))ϕ±(x,k) =

k2

2
ϕ±(x,k) (3.47)

Inverting (−1
2
∆− k2

2
) one obtains the Lippmann-Schwinger equation. We recall the main

parts of a result on this due to Ikebe [27]. In the present form it can be found in [37].
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Proposition 4. Let V ∈ (V )2. Then for any k ∈ R3\{0} there are unique solutions

ϕ±(·,k) : R3 → C of the Lippmann-Schwinger equations

ϕ±(x,k) = eik·x − 1

2π

∫
e∓ik|x−x′|

|x− x′|
V (x′)ϕ±(x′,k)d3x′ , (3.48)

that satisfy the boundary conditions lim
x→∞

|ϕ±(x,k) − eik·x| = 0. They are also classical

solutions of the stationary Schrödinger equation (3.47) and such that:

(i) For any f ∈ L2(R3) the generalized Fourier transforms

(F±f)(k) = (2π)−
3
2 l. i.m.

∫
ϕ∗±(x,k)f(x)d3x

exist in L2(R3).

(ii) Ran(F±) = L2(R3). Moreover, F± : Ha.c.(H) → L2(R3) are unitary and the in-

verses of these unitaries are given by

(F−1
± f)(x) = (2π)−

3
2 l. i.m.

∫
ϕ±(x,k)f(k)d3k.

(iii) For any f ∈ L2(R3) the relations Ω±f = F−1
± Ff holds, where F is the ordinary

Fourier transform in 3 dimensions.

(iv) For any f ∈ Ha.c.(H) ∩D(H)

Hf(x) =

(
F−1
±
k2

2
F±f

)
(x)

and therefore for any f ∈ Ha.c.(H)

e−iHtf(x) =
(
F−1
± e−i

k2

2
tF±f

)
(x) .

In the next proposition we have collected results on the regularity of the generalized
eigenfunctions (cf. , e.g. , Proposition 2 in [18]).

Proposition 5. Let V ∈ (V )n for some n ≥ 3. Then:

(i) ϕ±(x, ·) ∈ Cn−2(R3 \ {0}) for all x ∈ R3 and the partial derivatives Dα
kϕ±(x,k),

|α| ≤ n− 2, are continuous with respect to x and k.

If, in addition, zero is neither an eigenvalue nor a resonance of H, then

(ii) sup
x∈R3,k∈R3

|ϕ±(x,k)| <∞,

for any |α| ≤ n− 2 there is a cα <∞ such that (κ := k
〈k〉)
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(iii) sup
k∈R3\{0}

∣∣κ|α|−1Dα
kϕ±(x,k)

∣∣ < cα〈x〉|α|

and for any l ∈ {1, . . . , n− 2} there is a cl <∞ such that

(iv) sup
k∈R3\{0}

∣∣∣ ∂l∂klϕ±(x,k)
∣∣∣ < cl〈x〉l,

where ∂
∂k

is the radial partial derivative in k-space.

For a proof of (i), (ii) and (iv) see [37], for (iii) see [18].

Now let N ≥ 2. For every l ∈ {1, 2, . . . , N} let Vl ∈ (V )2 and let ϕ±,l denote the
generalized eigenfunctions of Hl and F±,l the generalized Fourier transform defined via
ϕ±,l. Define the 3N -dimensional generalized (partial) Fourier transform(s) by

F±,I :=
∏
l∈I

F±,l , I ⊂ {1, 2, . . . , N} , (3.49)

and

F (N)
± := F±,{1,2,...,N} =

N∏
l=1

F±,l . (3.50)

This is well defined, since the F±,l obviously commute. By Proposition 4 F±,I (and thus

F (N)
± ) got the following properties:

(i) For any f ∈ L2(R3N)

(F±,If) (xIc ,kI) = (2π)−
3|I|
2 l. i.m.

∫
(ϕ±,I)

∗ (xI ,kI)f(x)d3|I|xI((
F (N)
± f

)
(k) = (2π)−

3N
2 l. i.m.

∫ (
ϕ

(N)
±

)∗
(x,k)f(x)d3Nx

)
,

(3.51)

where

ϕ±,I(xI ,kI) :=
∏
l∈I

ϕ±,l(xl,kl)
(
ϕ

(N)
± (x,k) :=

N∏
l=1

ϕ±,l(xl,kl)
)

(3.52)

are generalized eigenfunctions of HI =
∑
l∈I
Hl (H =

N∑
l=1

Hl) belonging to the eigen-

value
k2
I

2
=
∑
l∈I

k2
l

2
(k

2

2
=

N∑
l=1

k2
l

2
) and (xIc ,kI)l :=

{
xl if l ∈ Ic,
kl if l ∈ I .

(ii) Ran(F±,I) = L2(R3N). Moreover, F±,I : Hs(HI) → L2(R3N) are unitary and the
inverses of these unitaries are given by(

F−1
±,If

)
(x) = (2π)−

3|I|
2 l. i.m.

∫
ϕ±,I(xI ,kI)f(xIc ,kI)d

3|I|kI . (3.53)

Here Hs(HI) ∼=
N⊕
l=1

H(I)
ac (Hl) with H(I)

ac (Hl) :=

{
Ha.c.(Hl) if l ∈ I ,
L2(R3) if l ∈ Ic .
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(iii) For any f ∈ L2(R3N)

Ω
(N)
± f =

(
F (N)
±

)−1

F (N)f , (3.54)

where F (N) is the ordinary Fourier transform in 3N dimensions.

(iv) For any f ∈ Hs(HI) ∩D(HI)

HIf(x) =

(
F−1
±,I
k2
I

2
F±,If

)
(x) (3.55)

and therefore for any f ∈ Hs(HI)

∏
l∈I

e−iHltlf(x) =

[
F−1
±,I

(∏
l∈I

e−i
k2l
2
tl
)
F±,If

]
(x) . (3.56)

3.6.3 Proof of Lemmas 5 and 6

Lemmas 5 and 6 are special cases of

Lemma 7. Let Vl ∈ (V )4 and let zero be neither a resonance nor an eigenvalue of Hl

(l = 1, 2, . . . , N). Let ψ ∈ G(N). Then for all 0 < a < b <∞ there exist constants T <∞
and C <∞ such that for all subsets I ⊂ {1, 2, . . . , N} and for all r ∈ I

|ψ(x; t)− ΦI(x; t)| ≤ C

(
N∏
l=1

tl

)− 3
2

(min{tj | j ∈ I})−
1
2 (3.57)

and

∣∣∣∇rψ(x; t)− i
xr
tr

ΦI(x; t)
∣∣∣ ≤ C

(
N∏
l=1

tl

)− 3
2

(min{tj | j ∈ I})−
1
2 (3.58)

for all x ∈ R3N , t ∈ RN with tj > T and a <
xj
tj
< b for all j ∈ {1, 2, . . . , N}. Here

ψ(x; t) :=

(
N∏
l=1

e−iHltlψ

)
(x)

and

ΦI(x; t) :=

[(∏
j∈I

(itj)
− 3

2 e
i
x2j
2tj

)
F+,Iψ

]((x

t

)
I
,xIc ; t

Ic
)

with
((

x
t

)
I
,xIc

)
l
=

{
xl
tl

if l ∈ I
xl if l ∈ Ic

and tI
c

l =

{
tl if l ∈ Ic

0 if l ∈ I
.
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We first prove (3.57) and (3.58) under conditions on ψ̂out and then give a mapping lemma
(Lemma 10) that allows us to transfer those conditions to corresponding ones on ψ.

To more concisely state the conditions on ψ̂out, which consist of requirements regarding
differentiability and decay, we introduce the following operators:
For i ∈ {1, 2, . . . , 5} and j ∈ {1, 2, . . . , N} define P

(N)
i,j acting on suitable functions

f : R3N → C by

(
P

(N)
i,j f

)
(k) :=



f(k) if i = 1 ,
∂
∂kj
f(k) if i = 2 ,

∂2

∂k2
j
f(k) if i = 3 ,∑

|α|=1

Dα
kj
f(k) if i = 4 ,

κj
∑
|α|=2

Dα
kj
f(k) if i = 5 .

Here α = (α1, α2, α3) ∈ N3, κj :=
kj
〈kj〉 and 〈·〉 = (1 + (·)2)

1
2 . In the case N = 1, where

k = k1 ∈ R3, we write Pi instead of P
(1)
i,1 .

With that notation we define the set Ĝ(N) of “good” ψ̂out.

Definition 7. Let d = (d1, d2, . . . , d5) ∈ Z5. A function f : R3N \ N → C is in Ĝ(N)
d , if

there is a constant C <∞ such that for all i1, i2, . . . , iN ∈ {1, 2, . . . , 5}∣∣∣( N∏
j=1

P
(N)
ij ,j

)
f(k)

∣∣∣ ≤ C
N∏
j=1

〈kj〉−dij .

In particular, define

Ĝ(N) := Ĝ(N)
(6,5,3,3,2) .

Remark 7. To prove (3.13) and (3.14) we require ψ̂out ∈ Ĝ(N). In fact we could do with a

slightly more general class (the decay could be a little weaker, ψ̂out ∈ Ĝ(N)
(5,5,3,1,2)). However,

Ĝ(N) is the most general class of wave functions for which not only (3.13) and (3.14) can be

established but which is also invariant under multiplication by e−i
k2

2
t. The latter means

that it is invariant under the free time evolution in the sense that ψ̂out = F (N)(ψout) ∈ Ĝ(N)

implies also F (N)(e−iH0tψout) ∈ Ĝ(N). This corresponds to the invariance under full time

evolution of G(N) (cf. Definition 5) and will be needed in the proof of the mapping Lemma

10.

For ψ̂out ∈ Ĝ(N) we shall prove (3.13) and (3.14) using the corresponding one-particle
result (derived in [18, 37]) and induction: By (3.56)

ψ(x; t) =
(∏
j∈I

e−iHjtjψ
)(

x; tI
c)

=
[
F−1

+,I

(∏
j∈I

e−i
k2j
2
tj
)
F+,Iψ

](
x; tI

c)
=
[(∏

j∈I

F−1
+,je

−i
k2j
2
tj
)
F+,Iψ

](
x; tI

c)
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resp.

∇rψ(x; t) =
[
∇rF−1

+,re
−i k

2
r
2
tr
( ∏
j∈I\{r}

F−1
+,je

−i
k2j
2
tj
)
F+,Iψ

](
x; tI

c)
.

For N = 1 this reduces to (F+ψ = FΩ−1
+ ψ = ψ̂out by Proposition 4 (iii))

ψ(x, t) =
(
F−1

+ e−i
k2

2
tF+ψ

)
(x) =

(
F−1

+ e−i
k2

2
tψ̂out

)
(x)

resp.

∇ψ(x, t) =
(
∇F−1

+ e−i
k2

2
tψ̂out

)
(x) .

So the one-particle result will give us the action of each factor F−1
+,je

−i
k2j
2
tj resp.

∇rF−1
+,re

−i k
2
r
2
tr on functions in Ĝ(1) and our first task will be to show that ψ̂out ∈ Ĝ(N)

guarantees that (I1 ∪ I2 = I)[(∏
j∈I2

F−1
+,je

−i
k2j
2
tj
)
F+,Iψ

](
xIc1 ,kI1 ; t

Ic
)

viewed as a function of kj with j ∈ I1 is in Ĝ(1), i.e. that – when doing induction on the
length of I – we stay in the regime where the one-particle result is applicable. Since,
however,(

F+,Iψ
)(

xIc ,kI ; t
Ic
)

=
[
F+,I

(∏
j∈Ic

e−iHjtj
)
ψ
](

xIc ,kI
)

=
[
F+,I

(∏
j∈Ic

F−1
+,je

−i
k2j
2
tj
)
F+,Icψ

](
xIc ,kI

)
=
[(∏

j∈Ic
F−1

+,je
−i

k2j
2
tj
)
F+,IF+,Icψ

](
xIc ,kI

)
=
[(∏

j∈Ic
F−1

+,je
−i

k2j
2
tj
)
ψ̂out

](
xIc ,kI

)
and thus[(∏

j∈I2

F−1
+,je

−i
k2j
2
tj
)
F+,Iψ

](
xIc1 ,kI1 ; t

Ic
)

=
[(∏

j∈Ic1

F−1
+,je

−i
k2j
2
tj
)
ψ̂out

](
xIc1 ,kI1

)
,

this can again be done using the one-particle result and induction (this time on the length
of Ic1).

The one-particle result is collected in the following

Lemma 8. Let V ∈ (V )4 and let zero be neither a resonance nor an eigenvalue of H. Let

χ ∈ Ĝ(1)
(5,5,3,1,2). Then for all 0 < a <∞ there exists some T <∞ such that(

F−1
+ e−i

k2

2
tχ
)

(x) =
[(
t−

3
2P↔(t) + t−2Pf (t)

)
χ
]
(x) (3.59)
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and (
∇F−1

+ e−i
k2

2
tχ
)

(x) =
[(
t−

3
2 i

x

t
P↔(t) + t−2P ef (t)

)
χ
]
(x) (3.60)

for all t ≥ T, a < x
t
. Here

[P↔(t)χ] (x) := i−
3
2 ei

x2

2t χ
(x

t

)
and

[PF (t)χ] (x) :=
5∑
j=1

∫
R3

Fj(k,x, t)Piχ(k)
d3k

k2

for any quintuple of (possibly vector-valued) functions F = (F1, . . . , F5) : R6N+1 →
(C(3), . . . ,C(3)). Further, f := g+[x

t
(1+ x

t
)]−1h = (g1, . . . , g5)+ [x

t
(1+ x

t
)]−1(h1, h2, 0, 0, 0)

and f̃ := ikg+[x
t
(1+ x

t
)]−1h̃ = ik(g1, . . . , g5)+ [x

t
(1+ x

t
)]−1(h̃1, h̃2, 0, 0, 0) are independent

of χ and satisfy

sup
t∈R,x∈R3

|gj(k,x, t)| ≤ C〈k〉−edj (j = 1, . . . , 5)

sup
t≥T,x∈R3

|hj(k,x, t)| ≤ C〈k〉2, sup
t≥T,x≥aT

|h̃j(k,x, t)| ≤ C〈k〉3, (j = 1, 2)

(3.61)

for some C < ∞ and d̃ = (−2, 1, 0, 2, 1). Moreover, g does not depend on the potential

V .

For the proof of Lemma 8 see Lemma 4 (resp. equations (17) and (18)) in [18] and equations
(15) and (16) in [37]: The proofs in [18, 37] use the splitting18

ψ(x, t) =
(
F−1

+ e−i
k2

2
tψ̂out

)
(x) = (2π)−

3
2

∫
e−i

k2

2
tϕ+(x,k)ψ̂out(k)d3k

= (2π)−
3
2

∫
e−i

k2

2
teik·xψ̂out(k)d3k + (2π)−

3
2

∫
e−i

k2

2
tη+(x,k)ψ̂out(k)d3k

=: α(x, t) + β(x, t)

with η+(x,k) := ϕ+(x,k)−eik·x. Then α resp. ∇α corresponds to the free time evolution

and gives the leading order term t−
3
2P↔(t)ψ̂out resp. t−

3
2 ix

t
P↔(t)ψ̂out and the error term

t−2Pg(t)ψ̂out resp. t−2Pikg(t)ψ̂out ([18], Lemma 4) while β resp. ∇β gives the error term

t−2Ph(t)ψ̂out resp. t−2Peh(t)ψ̂out ([37], equation (15) resp. (16)). Both parts of the proof
rely on stationary phase methods, where one uses partial integration with respect to k
at most twice. This is why one needs bounds on ψ̂out up to its second order derivatives,
i.e. ψ̂out ∈ G(1). However, in [18, 37] the explicit form of Pf (t)ψ̂out = (Pg(t) + Ph(t))ψ̂out

18Cf. Proposition 4 (i): Since the ϕ+(x,k) are bounded by Proposition 5 (ii) and ψ̂out ∈ Ĝ(1) ⊂ L1(R3)
one can omit the l. i.m..
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resp. P ef (t)ψ̂out = (Pikg(t) + Peh(t))ψ̂out was not needed and thus not stated, so one has to
go through the corresponding proofs to verify that the error terms are indeed of the form
given in Lemma 8. Note also that the results in [18, 37] were formulated in the regime
t ≥ T0, x ≥ R0 for some appropriate T0 <∞, R0 <∞. Since for T big enough t ≥ T and
a < x

t
imply x > at ≥ aT ≥ R0, this of course includes our regime.

We return to general N and extend Lemma 8 to

Lemma 9. Let Vl ∈ (V )4 and let zero be neither a resonance nor an eigenvalue of Hl

(l = 1, 2, . . . , N). Let χ ∈ G(N)
(5,5,3,1,2). Then for all 0 < a <∞ there exist T <∞, C <∞

such that for all subsets I ⊂ {1, 2, . . . , N} and all r ∈ I[
F−1

+,I

(∏
j∈I

e−i
k2j
2
tj
)
χ
]
(xI ,kIc) =

[∏
j∈I

(
t
− 3

2
j P

(N)
↔,j (tj) + t−2

j P
(N)

f (j),j
(tj)
)
χ
]
(xI ,kIc) (3.62)

and[
∇rF−1

+,I

(∏
j∈I

e−i
k2j
2
tj
)
χ
]
(xI ,kIc)

=
[(
t
− 3

2
r i

xr
tr
P (N)
↔,r (tr) + t−2

r P
(N)ef (r),r

(tr)
)∏
j∈I\{r}

(
t
− 3

2
j P

(N)
↔,j (tj) + t−2

j P
(N)

f (j),j
(tj)
)
χ
]
(xI ,kIc)

(3.63)

for all x ∈ R3N , t ∈ RN with tj ≥ T and a <
xj
tj

for j ∈ I. Here[
P

(N)
↔,j (tj)ϕ

]
(x{j},y{j}c) := i−

3
2 e
i
x2j
2tj ϕ

((x

t

)
{j}
,y{j}c

)
,

[
P

(N)
F,j (tj)ϕ

]
(x{j},y{j}c) :=

5∑
i=1

∫
R3

Fi(kj,xj, tj)P
(N)
i,j ϕ(k{j},y{j}c)

d3kj
k2
j

and, for j ∈ I, f (j) = g + [
xj
tj

(1 +
xj
tj

)]−1h(j), f̃ (j) = ikjg + [
xj
tj

(1 +
xj
tj

)]−1h̃(j) with g as in

Lemma 8 and h(j) = (h
(j)
1 , h

(j)
2 , 0, 0, 0), h̃(j) = (h̃

(j)
1 , h̃

(j)
2 , 0, 0, 0) independent of χ and such

that (3.61) holds.

Further, for d = (5, 5, 3, 1, 2) and all I1 ∪ I2 = I, r ∈ I2 and ij ∈ {1, 2, . . . , 5} (j ∈ Ic)∣∣∣[( ∏
j∈Ic

P
(N)
ij ,j

)(∏
l∈I1

t
− 3

2
l P

(N)
↔,l (tl)

)( ∏
m∈I2

t−2
m P

(N)

f (m),m
(tm)

)
χ
]
(xI ,kIc)

∣∣∣
≤ C

(∏
l∈I1

t
− 3

2
l

)( ∏
m∈I2

t−2
m

)(∏
j∈Ic

〈kj〉−dij
) (3.64)

and∣∣∣[( ∏
j∈Ic

P
(N)
ij ,j

)(∏
l∈I1

t
− 3

2
l P

(N)
↔,l (tl)

)(
t−2
r P

(N)ef (r),r
(tr)
)( ∏
m∈I2\{r}

t−2
m P

(N)

f (m),m
(tm)

)
χ
]
(xI ,kIc)

∣∣∣
≤ C

(∏
l∈I1

t
− 3

2
l

)( ∏
m∈I2

t−2
m

)(∏
j∈Ic

〈kj〉−dij
) (3.65)

for all x ∈ R3N , t ∈ RN with tj ≥ T and a <
xj
tj

for j ∈ I.
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Proof of Lemma 9. We first prove (3.64) and (3.65). By the definition of P
(N)
↔,j and

P
(N)

f (j),j
we have∣∣∣[( ∏

j∈Ic
P

(N)
ij ,j

)(∏
l∈I1

t
− 3

2
l P

(N)
↔,l (tl)

)( ∏
m∈I2

t−2
m P

(N)

f (m),m
(tm)

)
χ
]
(xI ,kIc)

∣∣∣
≤

5∑
im=1

(m∈I2)

∫
R3|I2|

d3|I2|kI2
k2
I2

[( ∏
m∈I2

t−2
m |f

(m)
im

(xm,km, tm)|
)

(∏
l∈I1

t
− 3

2
l

)∣∣∣( ∏
j∈Ic

P
(N)
ij ,j

)( ∏
m∈I2

P
(N)
im,m

)
χ
((x

t

)
I1
,kI2∪Ic

)∣∣∣]
=
(∏
l∈I1

t
− 3

2
l

)( ∏
m∈I2

t−2
m

)
5∑

im=1
(m∈I2)

∫
R3|I2|

d3|I2|kI2
k2
I2

( ∏
m∈I2

|f (m)
im

(xm,km, tm)|
)∣∣∣( ∏

j∈Ic1

P
(N)
ij ,j

)
χ
((x

t

)
I1
,kIc1

)∣∣∣

(3.66)

where k2
I2

:=
∏

m∈I2 k
2
m and exchange of differentiation and integration (i.e. that we put

all the differential operators P
(N)
i,j inside the innermost integral) will be justified below.

Remember that the f (m) fulfill (3.61) (with d̃ = (−2, 1, 0, 2, 1),) resp. that χ ∈ G(N)
d with

d = (5, 5, 3, 1, 2). Then we have( ∏
m∈I2

|f (m)
im

(xm,km, tm)|
)

≤C
∏
m∈I2

[
〈km〉−

edim +
〈km〉2(δim1 + δim2)

xm
tm

(1 + xm
tm

)

]
≤ C

∏
m∈I2

[
〈km〉−

edim +
〈km〉2(δim1 + δim2)

a(1 + a)

]
resp. (cf. Definition 7)∣∣∣( ∏

j∈Ic1

P
(N)
ij ,j

)
χ
((x

t

)
I1
,kIc1

)∣∣∣ ≤ C
(∏
j∈Ic1

〈kj〉−dij
)

and thus( ∏
m∈I2

|f (m)
im

(xm,km, tm)|
)∣∣∣( ∏

j∈Ic1

P
(N)
ij ,j

)
χ
((x

t

)
I1
,kIc1

)∣∣∣
≤ C

∏
m∈I2

[
〈km〉−

edim +
〈km〉2(δim1 + δim2)

a(1 + a)

](∏
j∈Ic1

〈kj〉−dij
)

≤ C
( ∏
m∈I2

〈km〉−3
)(∏

j∈Ic
〈kj〉−dij

) (3.67)

for some constant C <∞ (depending on a and T ). In particular, (3.67) is integrable with

respect to
d3|I2|kI2
k2
I2

. Thus exchange of differentiation and integration in (3.66) is justified
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and putting (3.67) into it gives (3.64). The proof of (3.65) is completely analogous, we

just need to replace t−2
r P

(N)

f (r),r
by t−2

r P
(N)ef (r),r

for some r ∈ I2. Then the bound in (3.67) will

be proportional to 〈kr〉−2
(∏

m∈I2\{r}〈km〉
−3
)

instead of
(∏

m∈I2〈km〉
−3
)
, which, however,

still suffices to get integrability with respect to
d3|I2|kI2
k2
I2

and thus (3.65).

With (3.64) established, the proof of (3.62) and (3.63) is a straightforward induction on

the length of the subsets I. First, let I = {j}. Since χ ∈ G(N)
(5,5,3,1,2) implies χ(·{j},k{j}c) ∈

G(1)
(5,5,3,1,2) for all k{j}c ∈ R3(N−1), (3.62) and (3.63) follow immediately from Lemma 8.

Now let I ⊂ {1, 2, . . . N} with 1 ≤ |I| ≤ N − 1. Then by the induction hypothesis

[
F−1

+,I∪{r}

(∏
j∈I∪{r}

e−i
k2j
2
tj
)
χ
]
(xI∪{r},kIc\{r})

=
[(
F−1

+,re
−i k

2
r
2
tr
)
F−1

+,I

(∏
j∈I

e−i
k2j
2
tj
)
χ
]
(xI∪{r},kIc\{r})

=
[(
F−1

+,re
−i k

2
r
2
tr
)∏
j∈I

(
t
− 3

2
j P

(N)
↔,j (tj) + t−2

j P
(N)

f (j),j
(tj)
)
χ
]
(xI∪{r},kIc\{r})

(3.68)

and

[
∇rF−1

+,I∪{r}

(∏
j∈I∪{r}

e−i
k2j
2
tj
)
χ
]
(xI∪{r},kIc\{r})

=
[
∇r

(
F−1

+,re
−i k

2
r
2
tr
)∏
j∈I

(
t
− 3

2
j P

(N)
↔,j (tj) + t−2

j P
(N)

f (j),j
(tj)
)
χ
]
(xI∪{r},kIc\{r})

(3.69)

for any r ∈ Ic. Since[∏
j∈I

(
t
− 3

2
j P

(N)
↔,j (tj) + t−2

j P
(N)

f (j),j
(tj)
)
χ
]
(xI ,kIc)

=
∑

I1∪I2=I

[(∏
j∈I1

(
t
− 3

2
j P

(N)
↔,j (tj)

)(∏
l∈I2

t−2
l P

(N)

f (l),l
(tl)
)
χ
]
(xI ,kIc) ,

(3.64) in particular implies[∏
j∈I

(
t
− 3

2
j P

(N)
↔,j (tj) + t−2

j P
(N)

f (j),j
(tj)
)
χ
]
(xI ,kIc\{r}, ·{r}) ∈ Ĝ(1)

(5,5,3,1,2)

for all kIc\{r} ∈ R3(|Ic|−1) and all x ∈ R3N , t ∈ RN with tj ≥ T and a <
xj
tj

for j ∈ I.

Thus (3.68), (3.69) and Lemma 8 already give (3.62) and (3.63). �

With Lemma 9 we can now prove (3.57) and (3.58) for ψ̂out ∈ Ĝ(N)
(5,5,3,1,2). Let 0 < a < b

< ∞ and T < ∞, C < ∞ as in Lemma 9. Further let I ⊂ {1, 2, . . . , N} and x ∈ R3N ,
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t ∈ RN such that tj ≥ T and a <
xj
tj
< b for all j ∈ {1, 2, . . . , N}. First, note that

(
F+,Iψ

)(
xIc ,kI ; t

Ic
)

=
[
F+,I

(∏
j∈Ic

e−iHjtj
)
ψ
](

xIc ,kI
)(3.56)

=
[
F+,IF−1

+,Ic

(∏
j∈Ic

e−i
k2j
2
tj
)
F+,Icψ

](
xIc ,kI

)
=
[
F−1

+,Ic

(∏
j∈Ic

e−i
k2j
2
tj
)
F+,IF+,Icψ

](
xIc ,kI

)
=
[
F−1

+,Ic

(∏
j∈Ic

e−i
k2j
2
tj
)
F (N)

+ ψ
](

xIc ,kI
)

(3.54)
=
[
F−1

+,Ic

(∏
j∈Ic

e−i
k2j
2
tj
)
ψ̂out

](
xIc ,kI

)
(3.62)
=
[ ∏
j∈Ic

(
t
− 3

2
j P

(N)
↔,j (tj) + t−2

j P
(N)

f (j),j
(tj)
)
ψ̂out

]
(xIc ,kI

)
=
∑

I1∪I2=Ic

[(∏
j∈I1

t
− 3

2
j P

(N)
↔,j (tj)

)(∏
l∈I2

t−2
l P

(N)

f (l),l
(tl)
)
ψ̂out

](
xIc ,kI

)
,

(3.70)

so in particular we have by (3.64)

(
F+,Iψ

)(
xIc ,kI ; t

Ic
)
∈ Ĝ(|I|)

(5,5,3,1,2) .

Thus by (3.56) and (3.62) resp. (3.63)

ψ(x; t) =
[
F−1

+,I

(∏
j∈I

e−i
k2j
2
tj
)
F+,Iψ

](
x; tI

c)
=
[∏
j∈I

(
t
− 3

2
j P

(N)
↔,j (tj) + t−2

j P
(N)

f (j),j
(tj)
)
F+,Iψ

](
x; tI

c) (3.71)

resp.

∇rψ(x; t)

=
[(
t
− 3

2
r i

xr
tr
P

(N)
↔,j (tr) + t−2

r P
(N)ef (r),r

(tr)
)

∏
j∈I\{r}

(
t
− 3

2
j P

(N)
↔,j (tj) + t−2

j P
(N)

f (j),j
(tj)
)
F+,Iψ

](
x; tI

c)
.

(3.72)

Since

ΦI(x; t)=
[∏
j∈I

(
(itj)

− 3
2 e
i
x2j
2tj

)
F+,Iψ

]((x
t

)
I
,xIc ; t

Ic
)

=
[∏
j∈I

(
t
− 3

2
j P

(N)
↔,j (tj)

)
F+,Iψ

](
x; tI

c)
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extracting the leading order term in (3.71) gives

|ψ(x; t)− ΦI(x; t)|

≤
∑

I1∪I2=I
I2 6=∅

∣∣∣[(∏
j∈I1

(
t
− 3

2
j P

(N)
↔,j (tj)

)(∏
l∈I2

t−2
l P

(N)

f (l),l
(tl)
)
F+,Iψ

]
(x; tI

c

)
∣∣∣

(3.70)

≤
∑

I1∪I2=I
I2 6=∅

I3∪I4=Ic

∣∣∣[( ∏
j∈I1∪I3

(
t
− 3

2
j P

(N)
↔,j (tj)

)( ∏
l∈I2∪I4

t−2
l P

(N)

f (l),l
(tl)
)
ψ̂out

]
(x; tI

c

)
∣∣∣

(3.64)

≤ C
∑

I1∪I2=I
I2 6=∅

I3∪I4=Ic

( ∏
j∈I1∪I3

t
− 3

2
j

)( ∏
l∈I2∪I4

t−2
l

)
≤ C

( N∏
j=1

t
− 3

2
j

)(
min{tj|j ∈ I}

)− 1
2
,

i.e. (3.57). In the same way extracting the leading order term in (3.71) gives (3.58):

|∇rψ(x; t)− i
xr
tr

ΦI(x; t)|

(3.70)

≤ xr
tr

∑
I1∪I2=I
r 6∈I2 6=∅
I3∪I4=Ic

∣∣∣[( ∏
j∈I1∪I3

(
t
− 3

2
j P

(N)
↔,j (tj)

)( ∏
l∈I2∪I4

t−2
l P

(N)

f (l),l
(tl)
)
ψ̂out

]
(x; tI

c

)
∣∣∣

+
∑

I1∪I2=I\{r}
I3∪I4=Ic

∣∣∣[( ∏
j∈I1∪I3

(
t
− 3

2
j P

(N)
↔,j (tj)

)( ∏
l∈I2∪I4

t−2
l P

(N)

f (l),l
(tl)
)
t−2
r P

(N)ef (r),r
(tr)ψ̂out

]
(x; tI

c

)
∣∣∣

(3.64),(3.65)

≤ C
( N∏
j=1

t
− 3

2
j

)[
b
(

min{tj|j ∈ I \ {r}}
)− 1

2
+ t

− 1
2

r

]
≤ C

( N∏
j=1

t
− 3

2
j

)(
min{tj|j ∈ I}

)− 1
2
.

Thus, to finish the proof of Lemma 7 it suffices to show that ψ̂out ∈ Ĝ(N) ⊂ Ĝ(N)
(5,5,3,1,2)

if ψ ∈ G(N). That is the content of the following mapping

Lemma 10. Let Vl ∈ (V )4 and let zero be neither a resonance nor an eigenvalue of Hl

(l = 1, . . . , N). Then

ψ ∈ G(N) ⇒ ψ̂out ∈ Ĝ(N).

Remark 8. ψ ∈ G(N) contains the requirement ψ ∈ C∞(H). This is necessary to get

almost sure global existence of Bohmian mechanics and the main Theorems 3 and 5. For

the mapping Lemma 10 ψ ∈ C3N(H) :=
3N⋂
n=1

D(Hn) would be sufficient.

Proof of Lemma 10. The proof is adapted from that of Lemma 1 in [17] (an analogous
mapping lemma for N = 1).
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Let ψ ∈ G(N). Then there is a χ ∈ G(N)
0 and a t ∈ R such that

ψ = e−iHtχ .

Using (3.54) and (3.56) (or alternatively the intertwining property Ω−1
+ H = H0Ω

−1
+ ) we

get

ψ̂out = F (N)
+ ψ = F (N)

+ e−iHt
(
F (N)

+

)−1

F (N)
+ χ = e−i

k2

2
tχ̂out .

Since Ĝ(N) is invariant under multiplication by e−i
k2

2
t (this is easy to check), it suffices to

show that χ̂out is in Ĝ(N)
0 .

Since

〈x〉
3N+1

2
+βHnχ ∈ L2(R3N), β ∈ {N + 1, . . . , 2N}, n ∈ {0, 1, . . . , 4N − β} ,

〈x〉
3N+1

2
+NHnχ ∈ L2(R3N), n ∈ {2N, . . . , 3N} ,

we have

〈x〉βHnχ ∈ L1(R3N) ∩ L2(R3N), β ∈ {N + 1, . . . , 2N}, n ∈ {0, 1, . . . , 4N − β} ,
〈x〉NHnχ ∈ L1(R3N) ∩ L2(R3N), n ∈ {2N, . . . , 3N} .

(3.73)

Let d := (6, 5, 3, 3, 2) and β := (0, 1, 2, 1, 2). For i = (i1, i2, . . . , iN) ∈ {1, 2, . . . , 5}N
define19

di := (di1 , di2 , . . . , diN ), di :=
N∑
j=1

⌈
dij
2

⌉
,

βi := (βi1 , βi2 , . . . , βiN ), βi :=
N∑
j=1

βij ,

Pi :=
N∏
j=1

P
(N)
ij ,j

and note that, with the usual multi-index notation, 〈k〉di =
N∏
j=1

〈kj〉dij . We shall show

that there is some C <∞ such that∣∣〈k〉diPiχ̂out(k)
∣∣ ≤ C max

n=0,1,...,di

∥∥〈x〉βiHnχ
∥∥
L1(R3N )

(3.74)

for all i ∈ {1, 2, . . . , 5}N and k ∈ R3N \ N and that (3.73) in fact implies

〈x〉βiHn ∈ L1(R3N), n ∈ {0, 1, . . . , di} . (3.75)

Then
|Piχ̂out(k)| ≤ C̃〈k〉−di ,

19d e denotes the ceiling function.
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i.e. χ̂out ∈ Ĝ(N).

Let i ∈ {1, 2, . . . , 5}N . Then

∣∣〈k〉diPiχ̂out(k)
∣∣ ≤ ∣∣∣(1 + k2)

NP
j=1

dij
2

Piχ̂out(k)
∣∣∣

≤
∣∣(1 + k2)diPiχ̂out(k)

∣∣ ≤ C

di∑
n=0

∣∣∣(k2

2

)n
Piχ̂out(k)

∣∣∣ . (3.76)

Since the P
(N)
ij ,j

s are differential operators of at most order two, the commutator[(
k2

2

)n
, Pi

]
can be easily calculated and we find∣∣∣(k2

2

)n
Piχ̂out(k)

∣∣∣ ≤ Cn max
n′=0,1,...,n

i′∈Mi

∣∣∣Pi′

(k2

2

)n′
χ̂out(k)

∣∣∣
with Mi := {i′ ∈ {1, 2, . . . , 5}N | i′j ∈ {1, ij} if ij = 1, 2, 4 and i′j ∈ {1, ij, ij−1} if ij = 3, 5.

Since
(
k2

2

)n′
χ̂out =

(
k2

2

)n′
F (N)

+ χ = F (N)
+ Hn′χ by (3.55), this gives∣∣∣(k2

2

)n
Piχ̂out(k)

∣∣∣ ≤ Cn max
n′=0,1,...,n

i′∈Mi

∣∣∣Pi′

(
F (N)

+ Hn′χ
)
(k)
∣∣∣ . (3.77)

We claim that there is some C <∞ such that∣∣∣Pi′ f̂out(k)
∣∣∣ ≤ C

∥∥〈x〉βi′f
∥∥
L1(R3N )

(3.78)

for all i′ ∈ {1, 2, . . . , 5}N , k ∈ R3N \ N and f ∈ L2(R3N) with 〈x〉βi′f ∈ L1(R3N). Then
(3.77) yields ∣∣∣(k2

2

)n
Piχ̂out(k)

∣∣∣ ≤ Cn max
n′=0,1,...,n

i′∈Mi

∥∥∥〈x〉βi′Hn′χ
∥∥∥
L1(R3N )

which together with (3.76) gives∣∣〈k〉iPiχ̂out(k)
∣∣ ≤ C max

n=0,1,...,di

i′∈Mi

∥∥〈x〉βi′Hnχ
∥∥
L1(R3N )

.

Since βi′j ≤ βij and thus βi′ ≤ βi for all i′ ∈Mi, we obtain

max
n=0,1,...,di

i′∈Mi

∥∥〈x〉βi′Hnχ
∥∥
L1(R3N )

≤ max
n=0,1,...,di

∥∥〈x〉βiHnχ
∥∥
L1(R3N )

and thus (3.74).

To prove (3.78) note that by Proposition 5∣∣∣Pi′

(
ϕ

(N)
+

)∗
(x,k)

∣∣∣ =
∣∣∣Pi′

N∏
j=1

ϕ∗+,j(xj,kj)
∣∣∣ ≤ C

N∏
j=1

〈xj〉
βi′
j ≤ C〈x〉βi′
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for all k ∈ R3N \ N . Thus∫
R3N

∣∣∣Pi′

(
ϕ

(N)
+

)∗
(x,k)f(x)

∣∣∣ d3Nx ≤ C
∥∥〈k〉βi′f

∥∥
L1(R3N )

<∞

which justifies the omission of the l. i.m. and the exchange of integration and differentia-
tion in∣∣∣Pi′ f̂out(k)

∣∣∣ (3.51)
=
∣∣∣Pi′(2π)−

3N
2 l. i.m.

∫
R3N

(
ϕ

(N)
+

)∗
(x,k)f(x)d3Nx

∣∣∣
=
∣∣∣(2π)−

3N
2

∫
R3N

Pi′

(
ϕ

(N)
+

)∗
(x,k)f(x)d3Nx

∣∣∣ ≤ (2π)−
3N
2 C

∥∥〈k〉βi′f
∥∥
L1(R3N )

and gives us (3.78).

Finally, to prove (3.75) note that

βi =
N∑
j=1

βij =
N∑
j=1

(
δij2 + 2δij3 + δij4 + 2δij5

)
∈ {0, 1, . . . , 2N} ,

di =
N∑
j=1

⌈
dij
2

⌉
=

N∑
j=1

(
3δij1 + 3δij2 + 2δij3 + 2δij4 + δij5

)
∈ {N,N + 1, . . . , 3N} ,

βi + di =
N∑
j=1

(
3δij1 + 4δij2 + 4δij3 + 3δij4 + 3δij5

)
∈ {3N, 3N + 1, . . . , 4N} .

Thus

di ∈ {max{N, 3N − βi},max{N, 3N − βi}+ 1, . . . ,min{3N, 4N − βi}}

and hence (3.75) follows if

〈x〉βiHnχ ∈ L1(R3N), n ∈ {0, 1, . . . ,min{3N, 4N − βi}} .

For βi ∈ {N + 1, N + 2, . . . , 2N} this is exactly the first part of (3.73), while for βi

∈ {0, 1, . . . , N} (3.73) implies∥∥〈x〉βiHnχ
∥∥
∈L1(R3N )

≤
∥∥〈x〉βHn

∥∥
∈L1(R3N )

<∞, β = 2N, n ∈ {0, 1, . . . , 4N − β = 2N} ,∥∥〈x〉βiHnχ
∥∥
∈L1(R3N )

≤
∥∥〈x〉NHn

∥∥
∈L1(R3N )

<∞, n ∈ {2N, 2N + 1, . . . , 3N} .

�
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[5] Berndl, K., Dürr, D., Goldstein, S., Peruzzi, G. and Zangh̀ı, N.: On the global
existence of Bohmian mechanics, Comm. Math. Phys. 173 (1995), no. 3, 647–673.

[6] Berndl, K.: Zur Existenz der Dynamik in Bohmschen Systemen, Ph.D. thesis,
Ludwig-Maximilians-Universität München, 1994.

[7] Berry, M. V.: Chaos and the semiclassical limit of quantum mechanics (is the moon
there where somebody looks?), CTNS–Vatican Conference on Quantum Mechanics
and Quantum Field Theory, 2000.

[8] Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden”
variables I, II, Physical Review 85 (1952), 166–179, 180–193.

[9] Breiman, L.: Probability, Addison-Wesley Publishing Company, Reading, Mass.,
1968.

[10] Combes, J.-M., Newton, R. G. and Shtokhamer, R.: Scattering into cones and flux
across surfaces, Physical Review D 11 (1975), no. 2, 366–372.
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[18] Dürr, D., Moser, T. and Pickl, P.: The flux-across-surfaces theorem under condi-
tions on the scattering state, J. Phys. A 39 (2006), no. 1, 163–183.

[19] Dürr, D., Goldstein, S. and Zangh̀ı, N.: Quantum Equilibrium and the Origin of
Absolute Uncertainty, Journal of Statistical Physics 67 (1992), 843–907.
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