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1 Introduction

Bohmian mechanics [8, 5, 14, 16, 17] is a complete quantum theory about
the motion of point particles from which the usual quantum formalism can
be derived by an analysis of ”measurement” [16].
The motion of spinless non-relativistic particles is defined by the ordinary
differential equation (4) below, that depends on the quantum mechanical
wave function of the system under consideration.
While particles in Bohmian mechanics in general have highly non-Newtonian
trajectories, we will show how, in the special context of potential scattering
theory, their long time asymptotes retain some ”classical” features. We shall
use those features to prove that for short range potentials V (q) falling off
like |q|−4−ε for |q| → ∞ the exit statistics for a surface far away from the
scattering center made by a wave function Ψ = Ψac+Ψpp ∈ Hac(H)+Hpp(H)
are up to the squared norm ‖Ψpp‖2 of the bound part of the wave function
the same as those made solely by the scattering part Ψac.
For V = 0 (i.e. for free particles) almost all Bohmian trajectories asymp-
totically behave like trajectories in classical mechanics; the particles asymp-
totically move with a uniform velocity (Section 3). For the related theory of
Nelson, stochastic mechanics, the same was proved by Shucker [28].
In Section 4 we turn to the behavior of Bohmian trajectories if V is a short-
range scattering potential. Then, for suitable potentials, there are two dis-
tinct classes of wave functions, scattering wave functions Ψac (that belong to
the absolute continuous spectral subspaceHac(H) of the Hamiltonian H) and
bound wave functions Ψpp (that belong to the pure point spectral subspace
Hpp(H)). That the former become asymptotically free for t →∞ (they tend
in L2 to asymptotic outgoing waves Ψout that evolve according to the free
time evolution), is reflected in the behavior of their Bohmian trajectories.
Almost all their long time asymptotes behave like those of the trajectories of
Ψout and thus like trajectories in classical mechanics again (Subsection 4.1).
In Subsection 4.2 we deal with more general wave functions Ψ = Ψac + Ψpp

that have both a scattering and a bound part. We show that the long time
asymptotes of the Bohmian trajectories split according to the splitting of the
wave function. The ”scattering” part moves out to spatial infinity linear in
time and becomes free and classical in the same sense as above. The situation
is somewhat different for the ”bound” part. Since a bound wave Ψpp stays in
the sphere of influence of the potential V even in the long time limit, it should
depend on the exact form of the potential V (how ”strong” it is) and on Ψpp

itself wether ”bound” Bohmian trajectories behave like classical trajectories
or not. This is an aspect of the classical limit for Bohmian mechanics that
we will not deal with here. However, we prove that, under certain conditions



2 1 INTRODUCTION

on ∇Ψpp and regardless of the exact form of V , almost all ”bound” trajecto-
ries stay inside a ball around the origin with a radius growing only sublinear
in time. So, while we cannot say that a ”bound” Bohmian trajectory stays
bound in the sense a classical trajectory would, it certainly stays bound in
the weaker sense that it can move out to spatial infinity only on an much
larger time scale than a ”scattering” Bohmian trajectory.
While the main concern of Section 4 is the long time behavior of wave func-
tions Ψt and their Bohmian trajectories, in Section 5 we will discuss its
connection to the scattering cross section and thus to experiment.
For Ψac

t = e−iHtΨac
0 ∈ Hac(H) one such connection is given by Dollard’s scat-

tering into cones theorem [12]. Assuming asymptotic completeness of the
wave operators it asserts that the probability of finding a particle in a cone
C ⊂ R3 with vertex at the origin is in the long time limit the same as that
of finding the quantum mechanical momentum of the asymptotic outgoing
wave Ψout

0 in the same cone,

lim
t→∞

∫
C

|Ψac
t (q)|2 d3q =

∫
C

|Ψ̂out
0 (k)|2 d3k. (1)

Since one can derive from it the expression of the differential cross section
dσ
dω

= |f(θ, φ)|2 of time independent scattering theory (see e.g. [4]), (1) is
regarded as fundamental for quantum mechanical scattering theory.
However, in a scattering experiment one will typically not look at the prob-
ability wether or not there is a particle in a given cone at a given time but
rather at that wether or not a particle crosses a given distant (detector)
surface in a given time interval. It was Combes, Newton and Shtokhamer
[9] who first gave the heuristically clear notion that the latter should be
given by integrating the quantum probability flux jΨ over the surface and
the time interval in question the form of a mathematical rigorous theorem,
the flux-across-surfaces theorem (FAST)

lim
R→∞

∞∫
0

dt

∫
RΣ

jΨac

(q, t) · n̂ dσ =

∫
CΣ

|Ψ̂out
0 (k)|2 d3k, (2)

where Σ is a measurable subset of S1, the sphere with radius 1, RΣ := {Rq ∈
R3 | q ∈ Σ} and CΣ := {λq ∈ R3 | q ∈ Σ, λ ≥ 0} is the cone spanned by Σ.
Meanwhile (2) has been proved for several classes of scattering wave func-
tions Ψac and potentials V [10, 19, 2, 3, 31, 11, 24, 23, 13]. With the help of
(2) Dürr, Goldstein, Moser and Zhangh̀ı derived the scattering cross section
for short-range potentials and pure scattering wave functions in a rigorous
limit procedure [15](see also [22]).
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Since a realistic scattering experiment is performed on a large but neverthe-
less finite scale there is however no reason to restrict oneself to pure scattering
wave functions Ψac. On the contrary, the preparation of a beam of states in
a scattering experiment will in general produce wave functions with bound
components (see [15]: Subsection 5.1 and Section 7). Thus in Section 5 we
exploit the splitting of the asymptotic Bohmian trajectories into ”scattering”
and ”bound” ones (described above) to prove a slightly modified version of
(2) for general wave functions Ψ = Ψac + Ψpp. Using this FAST we can
deduce the following for the exit statistics through a surface at a distance R
from the scattering center:

• For every wave function Ψ = Ψac + Ψpp ∈ Hac(H) + Hpp(H) there is
some time t(R) with t(R) →∞ as R →∞ such that the exit statistics
until this time t(R) are – in the limit R →∞ – completely determined
by the scattering part Ψac of the wave function alone.

• Also, the exit statistics for all time are – up to an error of order ‖Ψpp‖2–
induced solely by the scattering part Ψac of the wave function.

Recall that states in a scattering experiment are usually prepared far away
from the scattering center (if not at spatial infinity) so the bound component
Ψpp of the wave function will be small in L2-sense, ‖Ψpp‖ < ε. Then the
difference in the exit statistics is at most of order ε2.
We start with a brief account of Bohmian mechanics in Section 2.
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2 Bohmian Mechanics

In Bohmian mechanics the state of a system of N spinless, non-relativistic
particles is described by its quantum mechanical wave function Ψt(q), where
q = (q1, q2, . . . , qn) ∈ Rn (n = 3N), and by its actual configuration Q =
(Q1, Q2, . . . , Qn) ∈ Rn, where the Qk are the positions of the particles.
The wave function evolves according to the Schrödinger equation

i~
∂Ψt

∂t
= HΨt (3)

and governs the motion of the particles by

dQk

dt
= vΨ

k (Q, t) :=
~

mk

Im
(∇kΨt(Q)

Ψt(Q)

)
. (4)

Here the mk are the masses of the particles and ∇k = ∂
∂qk

. In (3) H is the
usual non-relativistic Schrödinger Hamiltonian

H = −1

2

N∑
k=1

1

mk

4k + V (q) =: H0 + V (q) (5)

with the non-relativistic interaction potential V1.
The dynamical system defined by Bohmian mechanics is naturally associated
with a family of finite measures PΨt given by the densities ρΨt(q) := |Ψt(q)|2
on configuration space Rn2. If at some time t0 we start with a random
distribution for the configuration q of the system given by ρt0 = ρΨt0 , for
any other time t the density which this is transported to by (4) will be given
by ρt = ρΨt . This property is called equivariance [17]. More precisely, let
Φt,t0 : Rn → Rn be the flow map of (4), i.e., if q is the initial configuration
at time t0, Φt,t0(q) is the configuration at time t which q is transported to by
(4). Then the density ρt0 is transported to ρt = ρt0 · Φ−1

t,t0 = ρt0 · Φt0,t. We
say that the functional Ψt 7→ PΨt , from wave functions to the finite measures
PΨt (given by the densities ρΨt) on configuration space, is equivariant if the
diagram

Ψt0

Ut−t0−−−→ Ψty y
ρΨt(t0) −−−→

Ft,t0

ρΨt

1More rigorously: H is a self-adjoint extension of H|C∞0 (Rn) = H0 + V (with H0 as
above and V : Rn → R) on the Hilbertspace L2(Rn) with domain D(H)

2Of course, for ρΨt(q) to define a measure Ψt must be normalized, i.e. the L2 - norm

‖Ψt‖ =
( ∫

R3N

|Ψt(q)|2 dq
) 1

2 must be equal to 1.
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commutes. Here Ut = e−iHt is the solution map for the Schrödinger equation
(3) and Ft,t0 is the solution map for the natural evolution on densities arising
from (4), i.e. Ft,t0(ρ

Ψt0 ) = ρΨt0 · Φt0,t (see above).
Equivariance follows from comparing the classical continuity equation

∂

∂t
ρt(q) +∇ · ρt(q)v(q, t) = 0 (6)

with the quantum continuity equation

∂

∂t
|Ψt(q)|2 +∇ · jΨ(q, t) = 0, (7)

where the quantum probability flux jΨ is given by

jΨ
k (q, t) :=

~
mk

Im
(
Ψt(q)

∗∇Ψt(q)
)

= vΨ
k (q, t)|Ψt(q)|2. (8)

On the family of measures PΨt we bestow the role usually played by the
stationary ”equilibrium measure”3. Thus PΨt defines our notion of typicality
[17], which by equivariance is time independent. Let A ⊂ Rn be measurable.
Then by equivariance

PΨt1 (A) =

∫
Rn

χA(q)|Ψt1(q)|2 dq =

∫
Rn

(
χΦt2,t1 (A) · Φt1,t2

)
(q)|Ψt1(q)|2 dq =

=

∫
Rn

χΦt2,t1 (A)(q)
(
|Ψt1|2 · Φt2,t1

)
(q) dq =

=

∫
Rn

χΦt2,t1 (A)(q)|Ψt2(q)|2 dq = PΨt2

(
Φt2,t1(A)

)
,

(9)

where χA is the characteristic function of A that is one on A and zero else-
where.
From now on we will set ~ = mk = 1 (without real loss of generality).

2.1 Global Existence of Bohmian Mechanics

Up to now we tacitly assumed that Bohmian mechanics exist globally (i.e. the
particle trajectories are well defined for all times) for every Hamiltonian H as
in (5), every wave function Ψ and all initial times t0 and initial configurations

3Since in most cases the velocity field defined in (4) will be explicitly time dependent
one cannot expect to find a stationary measure.
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qt0 ∈ Rn. Of course this is not true. The velocity field as defined in (4) need
not be well defined at singularities of the potential V (since there Ψ need not
be differentiable) and surely is ill defined at the nodes of Ψ. A trajectory
could also escape to infinity in finite time. However, Berndl et al. [6] showed
PΨ-almost sure global existence of Bohmian mechanics for suitable potentials
and initial wave functions. While their proof is for spinless non-relativistic
particles only, Teufel and Tumulka [32] recently gave an alternative proof
that can be applied to any Bohm-type dynamics (e.g. Bohm-Dirac theory)
and for spinless non-relativistic particles uses conditions on potential and
wave function that are somewhat more general than those in [6].
Those conditions are:

A 1. The potential V is locally in L2 outside at most finitely many singu-
larities: V ∈ Lloc

2 (Ω), where Ω is the configuration space, Ω = Rn\{q ∈ Rn |
V (q)is singular}.

A 2. The initial wave function Ψ0 is in the domain of H, Ψ0 ∈ D(H), and
is normalized, ‖Ψ0‖ = 1. Moreover Ψt = e−iHtΨ0 is two times continuous
differentiable, Ψ ∈ C2(Ω× R).

A 3. For all 0 < T < ∞ there is some CT < ∞ such that sup
|t|≤T

‖∇Ψt‖ < CT .

Remark 1. Ψ ∈ C2(Ω×R) implies that vΨ is a C1-function on (Ω×R)\N ,
where N = {(q, t) ∈ (Ω× R) | Ψt(q) = 0} is the set of nodes of Ψ.

Proposition 1. Assume A1 - A3. Then for PΨ0-almost all q ∈ Ω the solution
Q(q, t) of (4) starting at Q(0) = q exists for all times t ∈ R.

The proof can be found in [32].

Remark 2. Since the set of singularities of the potential V consists of at most
finitely many points, it has Lebesgue measure zero and thus also PΨ0-measure
zero. So Proposition 1 holds also with ”PΨ0-almost all q ∈ Ω” replaced by
”PΨ0-almost all q ∈ Rn” (recall Ω = Rn\{q ∈ Rn | V (q) is singular}).

Remark 3. If V = V1 + V2 ∈ C∞(Ω) (with Ω as in A1), V1 is bounded
from below and V2 is H0-bounded with relative bound < 1, then the form
sum H = H0 + V is a self adjoint extension of H|C∞

0 (Rn). Moreover for

Ψt = e−iHtΨ0 with Ψ0 ∈ C∞(H) =
∞⋂
l=1

D(H l) and ‖Ψ0‖ = 1 A2 and A3

hold (Ψ is even in C∞(Ω×R)). Thus the Bohmian trajectories Q(q, t) exist
globally in time for almost all q ∈ Rn. For a proof see [6] (Corollary 3.2) or
[32] (Corollary 4).
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2.2 Some Notation

By Ωt0 we denote the configuration space Ω without the ”bad” points q for
which the solution of (4) starting at q at time t0 does not exist for all times.
Since they differ only by sets of PΨ0-measure zero (Proposition 1 and Remark
2 above) we shall mostly not discern between Rn, Ω and Ωt0 and call all three
”the configuration space”. It will prove convenient to define most quantities
on the whole of Rn.
Further we adopt the following conventions for the solutions of (4).

Qt0(q, t) := Φt,t0(q)

and

Q(q, t) := Q0(q, t) = Φt,0(q) =: Φt(q)

for all t, t0 ∈ R and q ∈ Ωt0 .
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3 Bohmian Trajectories for Free Particles

In classical non-relativistic mechanics particles in systems with potential
zero move with uniform velocity v (possibly zero), i.e. their trajectories
are straight lines. We show that in the long time limit the same is true for
PΨ-almost all free trajectories in Bohmian Mechanics. In addition we find
in accordance with orthodox quantum theory that the density of the proba-
bility distribution for the asymptotic velocity v∞ is given by |Ψ̂0|2 whenever
|Ψ0(q)|2 is the probability density for finding a particle at q at time 0. Here
Fourier transformation is denoted by ̂.
In our proof we follow Shucker [28] who showed essentially the same thing
for stochastic mechanics.
We consider a system of N freely moving spinless non-relativistic particles.
Then the Hamiltonian of the system is given by H0 := −1

2
4 where 4 = ∇2

is the Laplace operator in n = 3N dimensions. Let Ψt = e−iH0tΨ0 with
Ψ0 ∈ S(Rn), the set of Schwartz functions, such that A2 holds. Note that
for H = H0 Ω = Rn, so A1 is automatically fulfilled. Moreover Ψ0 ∈ S(Rn)
guarantees A3, i.e. we have almost sure global existence of Bohmian me-
chanics.
We state our main result as two corollaries to a rather technical theorem
(Theorem 1).

Corollary 1. Let Ψ0 ∈ S(Rn) and Ψt = e−iH0tΨ0. Assume A2.

Then v∞(q) := lim
t→∞

Q(q,t)
t

exists for PΨ-almost all q ∈ Rn and the distribution

of v∞ has density |Ψ̂0|2.
Corollary 2. Let Ψ0 ∈ S(Rn) and Ψt = e−iH0tΨ0. Assume A2.
Then for all ε > 0 and δ > 0 there exists some TΨ

εδ > 0 such that

PΨ0
(
{q ∈ Rn | sup

t≥TΨ
εδ

|vΨ
(
Q(q, t), t

)
− v∞(q)| < δ}

)
> 1− ε. (10)

The structure of the proof is the following. First we establish some esti-
mates on the wave function Ψ and the velocity field vΨ (Proposition 2 and
Lemma 1). Next we will find subsets of initial configurations q at some
large time T that have PΨT -measure arbitrarily close to 1 and guarantee that
the velocity field vΨ is well behaved for all times t ≥ T in the sense that∣∣vΨ(Q(q, t), t)− Q(q,t)

t

∣∣ < δ for arbitrary small δ > 0 and all t ≥ T (Theorem
1). Then Corollary 2 and Corollary 1 are indeed easy consequences of The-
orem 1.
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Proposition 2. Let Ψ0 ∈ S(Rn) and Ψt = e−iH0tΨ0. Then

Ψt(q) = (2πit)−
n
2

∫
Rn

ei
|q−y|2

2t Ψ0(y) dny =

= (it)−
n
2 e

iq2

2t Ψ̂0(
q

t
) + (2πit)−

n
2 e

iq2

2t

∫
Rn

e−i q·y
t (e

iy2

2t − 1)Ψ0(y) dny =

=: ϕ1(q, t) + ϕ2(q, t)

(11)

and for all r ∈ R+
0 there is a cr < ∞ such that

|ϕ2(q, t)| ≤ crt
−n

2
−1(

t

|q|
)r and |∇ϕ2(q, t)| ≤ crt

−n
2
−1(

t

|q|
)r (12)

for all t > 0 and q ∈ Rn\{0}.

The proof can be found in [19] (proof of 2.7).

Remark 4. Recall that we want the long time asymptotes of the Bohmian
trajectories Q(q, t) to become straight lines, i.e. Q(q,t)

t
to be of order one

(for t → ∞). This desire is mirrored by our choice of wave functions. For
Ψ0 ∈ S(Rn) it turns out that relative to Ψt we can treat q

t
, too, as if it was

of order one in the sense that multiplication of Ψt or ∇Ψt by
(

q
t

)r
(where

r ∈ R+
0 is arbitrary) does not alter how fast Ψt or ∇Ψt decays in t. This can

be read of from Proposition 2 as follows.
In (11) Ψt(q) is split into ϕ1(q, t) and ϕ2(q, t). While (12) ascertains the
desired behavior for ϕ2, for ϕ1 we get it by noting that Ψ0 ∈ S(Rn) and thus(

q
t

)m
Ψ̂0(

q
t
) is bounded for every m ∈ N0. So by (11)

|ϕ1(q, t)| ≤ cmt−
n
2

( t

|q|
)m

for all m ∈ N0 and some cm < ∞. But this can be easily extended to hold for
all r ∈ R+

0 ; for t
|q| ≤ 1 respectively t

|q| > 1,
(

t
|q|

)r
is bounded by

(
t
|q|

)m
where

m is the smallest integer larger than r resp. the largest integer smaller than
r. In the same way we get bounds for ∇ϕ1.
Later on the ability to treat q

t
as essentially constant in certain circumstances

will come in handy since it allows us to ”translate” decay in time into spatial
decay. So we keep the full statement of (12) although in this Section (and
the next) we will use it with r = 0 only.
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Lemma 1. Let Ψ0 ∈ S(Rn) and Ψt := e−iH0tΨ0. Then

lim
t→∞

∫
Rn

∣∣∣∣Ψt

∣∣2 − t−n
∣∣Ψ̂0(

q

t
)
∣∣2∣∣ dnq = 0 (13)

and there exists a C1 < ∞ such that for all q ∈ Rn and all t > 0 with
Ψt(q) 6= 0

∣∣vΨ(q, t)− q

t

∣∣ ≤ C1t
−1−n

2 |Ψt(q)|−1. (14)

Although the first part of Lemma 1 is well known (see e.g. [12, 14, 27]) its
proof for Ψ0 ∈ S(Rn) is so short we add it as a matter of completeness.

Proof of Lemma 1. Since Ψ0 ∈ S(Rn)

‖ϕ2(·, t)‖ = ‖(2πt)−
n
2

∫
Rn

e−i ·
t
·y(ei y2

2t − 1)Ψ0(y) dny‖ =

= ‖F
(
(ei y2

2t − 1)Ψ0(y)
)
(·)‖ = ‖(ei ·

2

2t − 1)Ψ0(·)‖ ≤

≤
∫
Rn

|q|4

4t2
|Ψ0(q)|2 dnq

Ψ0∈S

≤ Ct−2 t→∞−→ 0,

where F denotes Fourier transformation. Then, using ||a|2 − |b|2| ≤ |a −
b|2 + 2|b||a− b| (where a = Ψt(q) and b = ϕ1(q, t)), (13) follows by Schwarz
inequality and the normalization of Ψ0.

Now let q ∈ Rn, t > 0. Since Ψ0 ∈ S(Rn),
∫
|∇qe

i
(q−y)2

2t Ψ0(y)| dny =∫
| |q−y|

t
Ψ0(y)| dny < ∞. Therefore we can interchange integration and differ-

entiation in

∇Ψt(q) = (2πit)−
n
2∇

∫
Rn

ei
|q−y|2

2t Ψ0(y) dny =

= (2πit)−
n
2

∫
Rn

∇qe
i
|q−y|2

2t Ψ0(y) dny =

= i
q

t
Ψt(q)−

i

t
(2πit)−

n
2

∫
Rn

yei
|q−y|2

2t Ψ0(y) dny.

(15)
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Again using Ψ0 ∈ S(Rn), this gives us with (4)

|vΨ(q, t)− q

t
| =

∣∣Im(∇Ψt(q)

Ψt(q)

)
− q

t

∣∣ =

=
∣∣Im( i

t
(2πit)−

n
2 Ψt(q)

−1

∫
Rn

yei
|q−y|2

2t Ψ0(y) dny
)∣∣ ≤

≤
∣∣ i
t
(2πit)−

n
2 Ψt(q)

−1

∫
Rn

yei
|q−y|2

2t Ψ0(y) dny
∣∣ ≤

≤ (2π)−
n
2 t−1−n

2 |Ψt(q)|−1

∫
Rn

|y||Ψ0(y)| dny ≤ C1t
−1−n

2 |Ψt(q)|−1

for some C1 < ∞. �

As mentioned above we wish to control
∣∣vΨ(Q(q, t), t) − Q(q,t)

t

∣∣ for T (and
thus t) big enough. By (14) this is tantamount to finding a lower bound on
|Ψt(Q(q, t))|. While we do know by [6, 32] that PΨ-almost all Bohmian tra-
jectories Q(q, t) do not run into nodes of Ψ, this only implies

∣∣vΨ(Q(q, t), t)−
Q(q,t)

t

∣∣ < ∞. We need to do better than that. Indeed we can do better than
that as in our special case it suffices to put a bound on |tn

2 Ψt(Q(q, t))|. But

for t big enough this is nearly the same as |Ψ̂0(
Q(q,t)

t
)| and if the Bohmian

trajectories really become straight lines asymptotically, Q(q,t)
t

will be essen-

tially constant and we should be able to control
∣∣vΨ(Q(q, t), t) − Q(q,t)

t

∣∣ by

putting suitable conditions on |Ψ̂0(
q
T
)| alone. This considerations lead us to

the following definition and to the formulation of Theorem 1.

Definition 1. For Ψ0 ∈ L2(Rn) and δ1 > 0, δ2 > 0 define

A
Ψ̂0
δ1

:= {q ∈ Rn | |Ψ̂0(q)| > δ1}

and

A
Ψ̂0
δ1δ2

:= {q ∈ Rn | Uδ2(q) := {y ∈ Rn | |q − y| < δ2} ⊂ A
Ψ̂0
δ1
}.
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Theorem 1. Let Ψ0 ∈ S(Rn) and Ψt = e−iH0tΨ0. Assume A2. Then for all
ε > 0 there exist some Tε > 0, δ1 > 0 and δ2 > 0 such that

PΨTε
(
{q ∈ Rn | q

Tε

6∈ A
Ψ̂0
δ1δ2

}
)

< ε, (16)

sup
q∈Rn\{0}

∣∣tn
2

∣∣Ψt(q)
∣∣− ∣∣Ψ̂0(

q

t
)
∣∣∣∣ <

δ1

2
∀ t ≥ Tε (17)

and for all q ∈ Rn\{0} such that q
Tε
∈ A

Ψ̂0
δ1δ2

QTε(q, t)

t
∈Uδ2(

q

Tε

) and∣∣vΨ
(
QTε(q, t), t

)
− QTε(q, t)

t

∣∣ = O(t−1) < δ2

∀ t ≥ Tε. (18)

Proof of Theorem 1. Let ε > 0 and define

C
Ψ̂0
δ1δ2

(Tε) := {q ∈ Rn | q

Tε

6∈ A
Ψ̂0
δ1δ2

}.

Then

PΨTε
(
C

Ψ̂0
δ1δ2

(Tε)
)

=

∫
C

Ψ̂0
δ1δ2

(Tε)

|ΨTε(q)|2 dnq ≤

≤
∫

C
Ψ̂0
δ1δ2

(Tε)

T
−n

2
ε

∣∣Ψ̂0(
q

Tε

)
∣∣2 dnq +

∫
C

Ψ̂0
δ1δ2

(Tε)

∣∣∣∣ΨTε(q)
∣∣2 − T−n

ε

∣∣Ψ̂0(
q

Tε

)
∣∣2∣∣ dnq ≤

≤
∫

(A
Ψ̂0
δ1δ2

)c

∣∣Ψ̂0(k)
∣∣2 dnk +

∫
Rn

∣∣∣∣ΨTε(q)
∣∣2 − T−n

ε

∣∣Ψ̂0(
q

Tε

)
∣∣2∣∣ dnq,

where k := q
Tε

.
To get a bound on the first term we note that

(A
Ψ̂0
δ1δ2

)c = (A
Ψ̂0
δ1

)c ∪ {k ∈ A
Ψ̂0
δ1
| Uδ2(k) 6⊂ A

Ψ̂0
δ1
}.
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Then∫
(A

Ψ̂0
δ1

)c

|Ψ̂0(k)|2 dnk =

∫
|Ψ̂0(k)|≤δ1

|Ψ̂0(k)|2 dnk ≤

≤
∫

|Ψ̂0(k)|≤δ1

|Ψ̂0(k)|2χBR
(k) dnk +

∫
Bc

R

|Ψ̂0(k)|2 dnk ≤

≤ 4πR3δ1 +

∫
Bc

R

|Ψ̂0(k)|2 dnk

for all R > 0. Since Ψ̂0 ∈ L2(Rn) there exists some R > 0 such that∫
Bc

R

|Ψ̂0(k)|2 dnk <
ε

8
.

Thus it is possible to choose δ1 > 0 small enough such that∫
(A

Ψ̂0
δ1

)c

|Ψ̂0(k)|2 dnk <
ε

4
.

Moreover, since Ψ0 ∈ S(Rn) and thus also Ψ̂0 ∈ S(Rn), Ψ̂0 is continuous.

Therefore A
Ψ̂0
δ1

is open and there exists some δ2 small enough such that∫
{k∈A

Ψ̂0
δ1
|Uδ2

(k) 6⊂A
Ψ̂0
δ1
}

|Ψ̂0(k)|2 dnk <
ε

4
.

To get a bound on the second term we use that by (13)∫
Rn

||ΨTε(q)|2 − T−n
ε |Ψ̂0(

q

Tε

)|2| dnq <
ε

2

for all Tε big enough. Thus (16) holds for all Tε big enough.
Moreover, noting that by (11)∣∣tn

2

∣∣Ψt(q)
∣∣− ∣∣Ψ̂0(

q

t
)
∣∣∣∣ ≤ t

n
2

∣∣ϕ2(q, t)
∣∣,

(17) follows directly from (12) if one takes r = 0 and Tε big enough.

Now let q
Tε
∈ A

Ψ̂0
δ1δ2

and suppose there exists some t1 > Tε such that
QTε (q,t1)

t1
6∈
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Uδ2(
q
Tε

). Since QTε(q, t) is continuous in t (by Remark 1), this implies that

the first exit time tex := max{Tε < s | QTε (q,s)

s
6∈ Uδ2(

q
Tε

) ∧ QTε (q,t)

t
∈

Uδ2(
q
Tε

) ∀Tε ≤ t < s} exists and
∣∣QTε (q,tex)

tex
− q

Tε

∣∣ = δ2. Moreover
QTε (q,τ)

τ
∈

Uδ2(
q
Tε

) ⊂ A
Ψ̂0
δ1

, i.e. |Ψ̂0

(QTε (q,τ)

τ

)
| > δ1 for all Tε ≤ τ < tex. By (17) this

implies

∣∣Ψτ

(
QTε(q, τ)

)∣∣ ≥ δ1

2
τ−

n
2 ∀Tε ≤ τ < tex

and thus by (14)

∣∣vΨ
(
QTε(q, τ), τ

)
− QTε(q, τ)

τ

∣∣ ≤ 2C1

δ1

τ−1 ∀Tε ≤ τ < tex.

Therefore for Tε big enough

∣∣QTε(q, tex)

tex
− q

Tε

∣∣ ≤ tex∫
Tε

∣∣ ∂

∂τ

QTε(q, τ)

τ

∣∣ dτ =

=

tex∫
Tε

1

τ

∣∣vΨ
(
QTε(q, τ), τ

)
− QTε(q, τ)

τ

∣∣ dτ ≤
tex∫

Tε

1

τ 2

2C1

δ1

dτ ≤

≤ 2C1

δ1

T−1
ε < δ2,

which is a contradiction. Thus (18) holds. �

Remark 5. We used the domain Ψ0 ∈ S(Rn) to simplify the proof. However,
Theorem 1 and thus Corollary 1 and Corollary 2 hold also if this condition
is replaced by

|Ψ0(q)| ≤ C(1 + |q|)−3−n−ε

and

|∂η
q Ψ0(q)| ≤ C(1 + |q|)−2−n−ε (|η| = 1)

for some C < ∞, ε > 0 and all q ∈ Rn. Here η is a multi-index.
Then all our estimates hold except for (12) in Proposition 2, which remains
valid for r = 0 only. But that was all we used.
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With Theorem 1 it is now easy to show Corollary 1 and Corollary 2.

Proof of Corollary 1. Let ε > 0. Then there exist δ1 > 0, δ2 > 0 and
Tε > 0 such that (16), (17) and (18) hold.

Let q
Tε
∈ A

Ψ̂0
δ1δ2

. Then (18) implies that there is a C > 0 such that

∣∣QTε(q, t1)

t1
− QTε(q, t2)

t2

∣∣ ≤ t2∫
t1

1

τ

∣∣vΨ(QTε(q, τ), τ)− QTε(q, τ)

τ

∣∣ dτ <

< C(t−1
1 − t−1

2 ) ≤ Ct−1
1

(19)

for all t2 ≥ t1 ≥ Tε.
Now let δ > 0 and define Tεδ := max{Tε,

C
δ
}. Then (19) implies

q

Tε

∈ A
Ψ̂0
δ1δ2

⇒ sup
t1,t2≥Tεδ

∣∣QTε(q, t1)

t1
− QTε(q, t2)

t2

∣∣ < δ

and by (16) we get

PΨTε
({

q ∈ Rn | sup
t1,t2≥Tεδ

∣∣QTε(q, t1)

t1
− QTε(q, t2)

t2

∣∣ < δ
})

> 1− ε.

Note however, that QTε(q, t) = Φt,Tε(q) and Q(q, t) = Φt,0(q) = Φt(q) (see
Subsection 2.2), so by equivariance (see (9))

PΨTε
({

q ∈ Rn | sup
t1,t2≥Tεδ

∣∣QTε(q, t1)

t1
− QTε(q, t2)

t2

∣∣ < δ
})

=

= PΨ0

(
Φ0,Tε

({
q ∈ Rn | sup

t1,t2≥Tεδ

∣∣Φt1,Tε(q)

t1
− Φt2,Tε(q)

t2

∣∣ < δ
}))

=

= PΨ0
({

q ∈ Rn | sup
t1,t2≥Tεδ

∣∣Φt1(q)

t1
− Φt2(q)

t2

∣∣ < δ
})

=

= PΨ0
({

q ∈ Rn | sup
t1,t2≥Tεδ

∣∣Q(q, t1)

t1
− Q(q, t2)

t2

∣∣ < δ
})

and thus

PΨ0
({

q ∈ Rn | sup
t1,t2≥Tεδ

∣∣Q(q, t1)

t1
− Q(q, t2)

t2

∣∣ < δ
})

> 1− ε. (20)

But (20) is a sufficient condition for PΨ-almost sure convergence of Q(q,t)
t

.

Let q̃ ∈ Rn such that lim
t→∞

Q(q̃,t)
t

does not exist. Then Q(q̃,t)
t

is not Cauchy, i.e.

there is some δ > 0 such that

q̃ 6∈
{
q ∈ Rn | sup

t1,t2≥T

∣∣Q(q, t1)

t1
− Q(q, t2)

t2

∣∣ < δ
}
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for all T ∈ R and thus also for all Tεδ where ε > 0 is arbitrary:

q̃ 6∈
{
q ∈ Rn | sup

t1,t2≥Tεδ

∣∣Q(q, t1)

t1
− Q(q, t2)

t2

∣∣ < δ
}

for all ε > 0. By (20) this implies that q̃ is in a set of measure zero.
It is left to show that the distribution of v∞ has density |Ψ̂0|2. Let A ⊂ Rn

be measurable. Then by (13), the definition of v∞ and using equivariance

PΨ0
({

q ∈ Rn |v∞ ∈ A
})

= lim
t→∞

PΨ0
({

q ∈ Rn | Q(q, t)

t
∈ A

})
=

= lim
t→∞

PΨt
({

q ∈ Rn | q

t
∈ A

})
= lim

t→∞

∫
q
t
∈A

|Ψt(q)|2 dnq =

= lim
t→∞

∫
q
t
∈A

t−n|Ψ̂0(
q

t
)|2 dnq =

∫
A

|Ψ̂0(k)| dnk,

where we substituted k = q
t

in the last step. �

Proof of Corollary 2. Let ε > 0. Then there are δ1 > 0, δ2 > 0 and

Tε > 0 such that (16)-(18) hold. In particular, for q such that q
Tε
∈ A

Ψ̂0
δ1δ2

,
(18) implies

|vΨ(QTε(q, t), t)− lim
s→∞

QTε(q, s)

s
| ≤

≤ lim
s→∞

∣∣QTε(q, t)

t
− QTε(q, s)

s

∣∣ +
∣∣vΨ

(
QTε(q, t), t

)
− QTε(q, t)

t

∣∣ <

< 2Ct−1

(21)

for all t ≥ Tε, where C is the same constant as in (19).
Now let δ > 0 and define Tεδ := max{Tε,

2C
δ
}. Then (21) implies

q

Tε

∈ A
Ψ̂0
δ1δ2

⇒ sup
t≥Tεδ

∣∣vΨ(QTε(q, t), t)− lim
s→∞

QTε(q, s)

s

∣∣ < δ.

This together with (16) and equivariance yields the desired result (see the
proof of Corollary 1 for details):
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1− ε < PΨTε
({

q ∈ Rn | q

Tε

∈ A
Ψ̂0
δ1δ2

})
≤

≤ PΨTε
({

q ∈ Rn | sup
t≥Tεδ

∣∣vΨ(QTε(q, t), t)− lim
s→∞

QTε(q, s)

s

∣∣ < δ
})

=

= PΨ0
({

q ∈ Rn | sup
t≥Tεδ

∣∣vΨ(Q(q, t), t)− v∞(q)
∣∣ < δ

})
.

�
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4 Bohmian Trajectories in Scattering

Situations

We will now look at a situation where a spinless, non-relativistic particle is
scattered by a short-range potential, i.e. the Hamiltonian of the system is
given by H = H0 + V (q), where H0 is the free Hamiltonian from above (in
three dimensions, N = 1) and the potential V (q) decays sufficiently fast for
|q| → ∞. Then, if the particle is far away from the scattering center, it is
quite natural to assume that it is almost free and again has a (virtually)
straight trajectory. Also if the potential allows of bound wave functions one
would expect to find trajectories staying in some sense close to the scattering
center.
By a short-range potential we mean V ∈ (V )4, which is defined as follows.

Definition 2 ((V)m). For m ≥ 2 the following conditions on the potential
V will be denoted by V ∈ (V )m.

(i) V ∈ L2(R3, R)

(ii) V is locally Hölder continuous4 except at a finite number of singulari-
ties.

(iii) There exist ε > 0, C0 > 0 and R0 > 0 such that |V (q)| ≤ C0|q|−m−ε for
all |q| ≥ R0.

For n = 2 those are the conditions of Ikebe [20] and the following holds.

Proposition 3 (Asymptotic Completeness). Let V ∈ (V )2. Then

(i) V is H0-bounded with arbitrary small relative bound and H = H0 + V
is self adjoint on D(H0).

(ii) The wave operators W± := s− lim
t→±∞

eiHte−iH0t exist and are asymptoti-

cally complete5.

(iii) The absolute continuous part of the spectrum is [0,∞) and there are no
positive eigenvalues.

4V : D → R is locally Hölder continuous if for all q0 ∈ D there is an open neighborhood
U(q0) ⊂ D and some C > 0, α > 0 such that |V (q0)− V (q)| ≤ C|q0 − q|α ∀q ∈ U(q0).

5W± are called asymptotically complete if RanW± = Hc(H) = Hac(H).
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For a proof of assertion (i) see also [26] (Theorem X.15).

So now we know that all wave functions orthogonal to all bound wave func-
tions, i.e. all wave functions in H⊥

pp(H), lie in Hac(H), the absolutely contin-
uous subspace for H. More importantly their long time asymptotes become
free in the following sense (for a more detailed discussion of the following see
[19]).

lim
t→∞

‖(W+ − 1)Ψac
t ‖ = 0,

i.e. e−iHsΨac
t ≈ e−iH0sΨac

t for t big enough and Ψac
t ∈ Hac(H). Note that

apart from some obvious change of signs the same is true also for t → −∞.
Thus those so-called scattering wave functions roughly speaking start off at
t = −∞ as ”free” wave functions, evolve into something more complicated
and finally end as ”free” wave functions again at t = ∞.
But how does this fit in with our notion that a particle ”far away” from the
scattering center moves almost freely? As far as we know it was Enss [25]
who first showed that the spatial support of scattering wave functions travels
to infinity as |t| → ∞. Then Born’s statistical interpretation of Ψac

t tells us
that for |t| → ∞, i.e. when Ψac

t evolves according to the free time evolution,
the particle is indeed far away from the scattering center.
In line with the above we show in Subsection 4.1 that the Bohmian trajecto-
ries for a large class of scattering wave functions become asymptotically free
in the sense of Section 3.
But what about the bound wave functions? It is known (see e.g. [25]) that
the spatial support of every bound wave function Ψpp

t ∈ Hpp(H) essentially
stays in a bounded region around the scattering center for all times, in the
sense that for all ε > 0 there is a R > 0 such that

sup
t∈R

∫
Bc

R

|Ψpp
t (q)|2 d3q < ε. (22)

Note that although this shows that the probability of finding the particle
outside a ball with a certain radius R is very small for all times, taken alone
it does say nothing at all about the probability that the particle’s trajectory
leaves this ball at some time. Nevertheless, in Subsection 4.2 we show that
under certain conditions on the decay of Ψpp

t and ∇Ψpp
t the probability of the

trajectory leaving a ball with a radius that grows like t
1

1+γ for some suitable
γ > 0 can be made arbitrarily small.
More than that in Subsection 4.2 we not really look at a pure bound wave
function alone but at the more general case of a mixed wave function Ψ =
Ψac + Ψpp. We show that for large times the set of all possible trajectories
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splits up according to the splitting of the wave function and that, while the
”bound” part of the trajectories stays inside a slowly growing ball (as de-
scribed above), the ”scattering” part stays outside a ball with radius growing
linear in time and consists of nearly ”free” trajectories (Theorem 3)6. Then
the above statement about pure bound wave functions is an easy corollary
and we can recover also our statement about pure scattering wave functions
(Remark 11). Since the Bohmian velocity field vΨ = Im(∇Ψ

Ψ
) is not linear in

Ψ this is in no way a trivial result.

4.1 Pure Scattering State

In the following let H = H0+V with V ∈ (V )4 and zero neither an eigenvalue
nor a resonance of H 7. Let Ω be R3 without the singularities of the potential
V . Then A1 holds.
We show that the long time asymptotes of PΨ-almost all Bohmian trajectories
of pure scattering wave functions Ψt = e−iHtW+Ψout

0 ∈ Hac(H) such that
A2 holds and with Ψout

0 ∈ S(R3) behave like free trajectories in classical
mechanics. Here Ψout

0 = W−1
+ Ψ0 is the asymptotic outgoing wave and evolves

according to the free time evolution Ψout
t = e−iH0tΨout

0 .

Remark 6. Analog to Section 3 we use Ψ̂out
0 ∈ S(R3) just for convenience

(q.v Remark 5). To prove the results in this section it suffices that there
exists some C < ∞ and some ε > 0 such that

|Ψout
0 (q)| ≤ C(1 + |q|)−6−ε, |∂η

q Ψout
0 (q)| ≤ C(1 + |q|)−5−ε (|η| = 1)

and

|Ψ̂out
0 (k)| ≤ C(1 + |k|)−4−ε, |∂η

kΨ̂out
0 (k)| ≤ C(1 + |k|)−4−ε (|η| = 1)

for all q, k ∈ R3.
Note that the conditions on Ψout

0 are the same as those on Ψ0 in Remark 5
(with n = 3), so (12) in Proposition 2 (and thus (27) in Lemma 2) remain
valid for r = 0 only, which however will be quite sufficient.
It would be of course preferable to have conditions on Ψ0 instead of Ψout

0 and

6Of course this is only true for PΨ-almost all trajectories, but since all our results
concerning trajectories are of that probabilistic form we will refrain from mentioning it
every time.

7For V ∈ (V )4 zero is said to be a resonance of H if there exists a solution f 6∈ L2(R3)
of (H0 + V (q))f(q) = 0 such that (1 + |q|2)− s

2 (1 −4)
1
2 f(q) ∈ L2(R3) for some 1

2 < s <
(4+ε0)− 1

2 ([21] p. 584). The occurance of a zero eigenvalue or resonance is an exceptional
event ([21] p.589).
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Ψ̂out
0 . For the conditions on Ψ̂out

0 we can use mapping properties between Ψ0

and Ψ̂out
0 Dürr, Moser and Pickl proved in Lemma 7 of [18]. Note however,

that their conditions on Ψ̂out
0 and thus on Ψ0 are stronger than what we need

here.

Remark 7. Since S(R3) is left invariant under the free time evolution the
so-called intertwining property of the wave operators, e−iHtW± = W±e−iH0t,
guarantees that the class of scattering wave functions defined above is left
invariant under the full time evolution.

Remark 8. By Proposition 3 V is H0-bounded with arbitrary small relative
bound. Then A3 holds. This can be seen as follows (see e.g. Corollary 3.2
of [6] or Corollary 3 of [32]). For some 0 < a < 1 and 0 < b

‖4Ψt‖ ≤ 2‖(V −H)Ψt‖ ≤ 2
[a

2
‖4Ψt‖+ b‖Ψt‖+ ‖HΨt‖

]
,

i.e.

‖4Ψt‖ ≤
2‖HΨt‖+ 2b‖Ψt‖

1− a
=

2‖HΨ0‖+ 2b‖Ψ0‖
1− a

=: C

But then also

‖ |∇Ψt| ‖ = 〈∇Ψt, ·∇Ψt〉 = −〈Ψt,4Ψt〉 ≤ ‖Ψt‖‖4Ψt‖ ≤ C.

Note that this together with what was said above gives us almost sure global
existence of Bohmian mechanics (by Proposition 1).

As in Section 3 we start with some estimates on the wave function Ψ and
the velocity field vΨ .

Proposition 4. Let Ψout
0 ∈ S(R3). Then Ψt = e−iHtW+Ψout

0 is continuously
differentiable except at the singularities of V and the following holds for

ϕ3(q, t) := Ψt(q)−Ψout
t (q). (23)

There is a R0 > 0 such that for every T > 0 there is a C2 < ∞ such that

|ϕ3(q, t)| ≤ C2
1

|q|(t + |q|)
∀|q| > 0 (24)

and

|∇ϕ3(q, t)| ≤ C2
1

|q|(t + |q|)
∀|q| > R0 (25)

for all t ≥ T .



4.1 Pure Scattering State 23

The proof can be found in [31] (Thm 2.1 and its proof; pp.5,6).

Lemma 2. Let Ψout
0 ∈ S(R3), Ψt = e−iHtW+Ψout

0 . Then

lim
t→∞

∫
R3

∣∣∣∣Ψt(q)
∣∣2 − t−3

∣∣Ψ̂out
0 (

q

t
)
∣∣2∣∣ d3q = 0. (26)

Moreover there exists a R0 > 0 such that for every r ≥ 0 there exists a
cr < ∞ and for every T > 0 there exist Ci < ∞ (i = 2, 3, 4) such that for all
t ≥ T and |q| > 0

∣∣∣∣Ψt(q)
∣∣− t−

3
2

∣∣Ψ̂out
0 (

q

t
)
∣∣∣∣ ≤ C2

|q|(t + |q|)
+ crt

− 5
2

( t

|q|
)r

(27)

and for all |q| > R0 and all t ≥ T with Ψt(q) 6= 0 and Ψout
t (q) 6= 0

∣∣vΨ(q, t)− q

t

∣∣ ≤ f1(q, t)t
−2|Ψt(q)|−1,

where f1(q, t) := C3

(
1 + C4

t

|q|
t−

5
2

|Ψout
t (q)|

)
+ C2

t

|q|
.

(28)

Remark 9. Note that the Ci (i = 2, 3, 4) in Proposition 4 and Lemma 2
depend on T . However we shall not denote this dependence for reasons of
simplicity of notation.
Regarding (27), it suffices for the moment to keep it in mind with r = 0 (see
also Remark 4).

Proof of Lemma 2. Since Ψout
0 ∈ S(R3) and Ψout

t obeys the free time
evolution Proposition 2 and Lemma 1 hold for Ψout

t . Moreover by Proposition
3

lim
t→∞

‖Ψt −Ψout
t ‖ = lim

t→∞
‖Ψ0 − eiHte−iH0tΨout

0 ‖ = ‖Ψ0 −W+Ψout
0 ‖ = 0.

Since ||a|2 − |b|2| ≤ |a − b|2 + 2|b||a − b|, where a = Ψt(q) and b = Ψout
t (q),

by the Schwarz inequality and the normalization of Ψout
t we get

lim
t→∞

∫
R3

||Ψt(q)|2 − |Ψout
t (q)|2| d3q = 0 (29)
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Then (13) (with n = 3) and (29) yield (26).
Now let R0 > 0 as in Proposition 4 and T > 0. Noting that by (11) and (23)∣∣∣∣Ψt(q)

∣∣− t−
3
2

∣∣Ψ̂out
0 (

q

t
)
∣∣∣∣ ≤ |Ψt(q)−Ψout

t (q) + Ψout
t (q)− ϕ1(q, t)| ≤

≤
∣∣ϕ3(q, t)

∣∣ +
∣∣ϕ2(q, t)

∣∣
we get (27) from (24) and (12)(with n = 3).
Finally, to prove (28) we use∣∣vΨ(q, t)− q

t

∣∣ ≤ ∣∣vΨ(q, t)− vΨout

(q, t)
∣∣ +

∣∣vΨout

(q, t)− q

t

∣∣. (30)

Then by Lemma 1 there is a C1 < ∞ such that

∣∣vΨout

(q, t)− q

t

∣∣ ≤ C1t
− 5

2

∣∣Ψout
t (q)

∣∣−1
= C1t

− 5
2

∣∣Ψt(q)
∣∣−1 |Ψt(q)|

|Ψout
t (q)|

≤

≤ C1t
− 5

2

∣∣Ψt(q)
∣∣−1 |Ψout

t (q)|+ |ϕ3(q, t)|
|Ψout

t (q)|
=

= C1t
− 5

2

∣∣Ψt(q)
∣∣−1(

1 +
|ϕ3(q, t)|
|Ψout

t (q)|
)
,

(31)

where we again used (23). To get a bound on the first term in (30) we will
use that ∣∣∇Ψout

t (q)
∣∣ ≤ |q|

t

∣∣Ψout
t (q)

∣∣ + Ct−
5
2 (32)

for some C < ∞.
This is an immediate consequence of (15) (with n = 3) and Ψout

0 ∈ S(R3).
Then using the definition of vΨ and (23)

∣∣vΨ(q, t)− vΨout

(q, t)
∣∣ =

∣∣Im(∇Ψt(q)

Ψt(q)

)
− Im

(∇Ψout
t (q)

Ψout
t (q)

)∣∣ ≤
≤

∣∣∣∣Ψout
t (q)

(
∇Ψout

t (q) +∇ϕ3(q, t)
)
−∇Ψout

t (q)
(
Ψout

t (q) + ϕ3(q, t)
)

Ψt(q)Ψout
t (q)

∣∣∣∣ =

= |Ψt(q)|−1
∣∣∇ϕ3(q, t)−∇Ψout

t (q)
ϕ3(q, t)

Ψout
t (q)

∣∣ ≤
≤

∣∣Ψt(q)
∣∣−1

(
|∇ϕ3(q, t)|+ |∇Ψout

t (q)| |ϕ3(q, t)|
|Ψout

t (q)|

)
≤

≤
∣∣Ψt(q)

∣∣−1
(
|∇ϕ3(q, t)|+

|q|
t
|ϕ3(q, t)|+ Ct−

5
2
|ϕ3(q, t)|
|Ψout

t (q)|

)
.
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If we plug this together with (31) into (30) we get∣∣vΨ(q, t)− q

t

∣∣ ≤
≤

∣∣Ψt(q)
∣∣−1[

C1t
− 5

2 +
|q|
t
|ϕ3(q, t)|+

|ϕ3(q, t)|
|Ψout

t (q)|
t−

5
2 (C1 + C) + |∇ϕ3(q, t)|

]
.

Noting that 1
|q|(t+|q|) ≤

t
|q|t

−2 by (24) and (25) this finally yields

∣∣vΨ(q, t)− q

t

∣∣ ≤
≤ t−2

∣∣Ψt(q)
∣∣−1[

(C1t
− 1

2 + C2) + C2(C1 + C)
t

|q|
t−

5
2

|Ψout
t (q)|

+ C2
t

|q|
]
≤

≤ t−2
∣∣Ψt(q)

∣∣−1[
(C1T

− 1
2 + C2) + C2(C1 + C)

t

|q|
t−

5
2

|Ψout
t (q)|

+ C2
t

|q|
]

for all t ≥ T and |q| > R0. �

As in Section 3 we wish to control
∣∣vΨ(Q(q, t), t)− Q(q,t)

t

∣∣ for times t greater
as or equal to some big time T . Looking at (28) one sees that this can be

done by putting suitable conditions on t
3
2 |Ψt(Q(q, t))|, t

3
2 |Ψout

t (Q(q, t))| and
Q(q,t)

t
. Since the first two terms both tend to |Ψ̂out

0 (Q(q,t)
t

)| as t → ∞, if the

asymptotic velocities really are constant, i.e. if Q(q,t)
t

= O(1), as in Section 3

it should suffice to have a lower bound for |Ψ̂out
0 ( q

T
)|. Contrary to Section 3

here we have to put a lower bound also on Q(q,t)
t

or rather q
T

itself. But this
should come as no surprise. We cannot expect a particle to move ”freely”
if it is still close to the scattering center, i.e. within the sphere of influence
of the potential. Since we wait only for a finite time T before we start to
look at the particle’s trajectory, we have to allow for some sort of minimal
”averaged velocity” a < q

T
so that the particle is already sufficiently far away

from the spatial support of the potential at time T . This consideration leads
us to the following definition and Theorem 2.

Definition 3. For Ψout
0 ∈ L2(R3) and for δ1 > 0, δ2 > 0 and a > 0 define

B
Ψ̂out

0
δ1a := {q ∈ R3 | q ∈ A

Ψ̂out
0

δ1
∧ |q| > a}

and

B
Ψ̂out

0
δ1δ2a := {q ∈ R3 | Uδ2(q) ⊂ B

Ψ̂out
0

δ1a }.
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Theorem 2. Let Ψout
0 ∈ S(R3), Ψt = e−iHtW+Ψout

0 . Assume A2. Then for
all ε > 0 there exist some a > 0, δ1 > 0, δ2 > 0 and Tε > 0 such that

PΨTε
(
{q ∈ R3 | q

Tε

6∈ B
Ψ̂out

0
δ1δ2a}

)
< ε. (33)

Moreover, for all q ∈ R3\{0} and all t ≥ Tε such that q
t
∈ B

Ψ̂out
0

δ1a

t
3
2 |Ψout

t (q)| > δ1

2
and t

3
2 |Ψt(q)| >

δ1

2
(34)

and for all q ∈ R3\{0} such that q
Tε
∈ B

Ψ̂out
0

δ1δ2a

QTε(q, t)

t
∈ Uδ2(

q

Tε

) and∣∣vΨ
(
QTε(q, t), t

)
− QTε(q, t)

t

∣∣ = O(t−
1
2 ) <

δ2

2

∀ t ≥ Tε. (35)

As the proof of Theorem 2 is quite similar to that of Theorem 1 we put it
into the appendix.
Now we can state the main result of this Subsection.

Corollary 3. Let Ψout
0 ∈ S(R3), Ψt = e−iHtW+Ψout

0 . Assume A2. Then

(i) v∞(q) := lim
t→∞

Q(q,t)
t

exists for PΨ-almost all q ∈ R3 and the distribution

of v∞ has density |Ψ̂out
0 |2.

(ii) For all ε > 0 and δ > 0 there exists a TΨ
εδ > 0 such that

PΨ0
(
{q ∈ R3 | sup

t≥TΨ
εδ

|vΨ
(
Q(q, t), t

)
− v∞(q)| > δ}

)
< ε. (36)

Using Theorem 2 instead of Theorem 1 the proof is exactly the same as that
of Corollary 1 respectively Corollary 2.
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4.2 Scattering State + Bound State

In the following let H = H0 + V as in Subsection 4.1. Let Ψt = Ψpp
t + Ψac

t

with Ψpp
t ∈ Hpp(H) and Ψac

t = e−iHtW+Ψout
0 ∈ Hac(H) with Ψout

0 ∈ S(R3).
Assume A2. Then PΨ-almost all Bohmian trajectories exist globally in time
(Remark 8).
Assume further

A 4. There exist R1 > 0, α > 0 and C5 < ∞ such that Ψpp
t is continuous

differentiable in Bc
R1

, Ψt ∈ C1(Bc
R1

), for all t ∈ R. Moreover

|Ψpp
t (q)| ≤ C5|q|−

3
2
−α and |∇Ψpp

t (q)| ≤ C5|q|−
3
2
−α (37)

for all t ∈ R and |q| > R1.

Remark 10. Note that A2 already implies Ψt ∈ C1(Bc
R1

) for all t ∈ R.
Nevertheless, as we will use A4 separately, we added it here.
More importantly (37) is supposedly not too strong an assumption. Indeed
there is a huge amount of literature on the exponential decay of eigenfunctions
of Schrödinger operators, although results for the gradient of eigenfunctions
are rather rare (see [29, 30] for an overview). We wish to state two results
on eigenfunctions u ∈ L2(R3), i.e. solutions of Hu = Eu with H as above
and E < 0.

(i) There exist R > 0 and C < ∞ such that

|u(q)| ≤ C|q|−1e−|E|
1
2 |q|

in Bc
R (see e.g. [1]).

(ii) If in addition to the above V ∈ K
(1)
3 (where we use the notation of [29],

p. 467), i.e. if the singularities of V are not too bad, u ∈ C1(Ω) and
for every q0 ∈ Ω

sup
{q∈Ω||q0−q|≤1}

|∇u(q)| ≤ C

∫
|q0−q|≤2

|u(q)| dq

for some (possibly E-dependent) positive constant C (q.v. [29]: The-
orems C.2.4. and C.2.5.). Using (i), we particulary get |∇u(q)| =

O(|q|e−|E|
1
2 |q|) for |q| → ∞.
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A4 severely curtails the probability that the modulus of the velocity |vΨpp | of
a ”bound” particle far away from the scattering center is large. If |vΨpp

(q)| ≤
|∇Ψpp

t (q)|
|Ψpp

t (q)| is large, either |∇Ψpp
t (q)| is large or |Ψpp

t (q)| is small or both. But

A4 implies that |∇Ψpp
t (q)| gets ever smaller for growing |q|, so the only pos-

sibility left is that |Ψpp(q)| and thus also |Ψpp(q)|2, the probability of the
particle to be at q, is small and gets ever smaller for growing |q|. Therefore
it is most likely (with respect to PΨpp

) that a particle far away from the
scattering center has got only a small velocity and thus stays inside a ball
around the origin with radius growing only slowly in time.
But let’s turn back to the full wave function Ψ = Ψac + Ψpp. We will prove
that there exists a natural decomposition of all possible paths in the following
sense. If one waits long enough, most (with respect to PΨ) initial configura-
tions q are such that the trajectory Q(q, t) either stays inside a sphere around

the origin with a radius increasing slowly like t
1

1+γ (where γ needs to be only
arbitrarily smaller than 2α) or is a nearly straight line and stays outside a
faster moving sphere (also centered around the origin) with a radius that
grows proportional to t.

~t

~t
1

1+γ

Figure 1: Splitting of the Bohmian trajectories for Ψ = Ψac + Ψpp.

Moreover, the decomposition of paths corresponds quite clearly to the de-
composition of Ψ = Ψac +Ψpp into scattering wave function and bound wave
function.

Theorem 3. Let Ψt = Ψpp
t +Ψac

t with Ψpp
t ∈ Hpp(H) and Ψac

t = e−iHtW+Ψout
0
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∈ Hac(H) with Ψout
0 ∈ S(R3). Assume A2 and A4. Define v∞(q) := lim

t→∞
Q(q,t)

t

and (for R > 0, T > 0, γ > 0 and δ > 0)

K<
γ (R, T ) :=

{
q ∈ R3 | |Q(q, t)| ≤ R

( t

T

) 1
1+γ ∀ t ≥ T

}
,

K>
δ (R, T ) :=

=
{
q ∈ R3 | |Q(q, t)| > R

t

T
∧

∣∣vΨ(Q(q, t), t)− v∞(q)
∣∣ < δ ∀ t ≥ T

}
.

Then for all ε > 0, δ > 0 and all 0 < γ < 2α there exist Rεγδ > 0 and
Tεγδ > 0 such that

PΨ0
(
K<

γ (Rεγδ, Tεγδ) ∪K>
δ (Rεγδ, Tεγδ)

)
> 1− ε. (38)

In fact ∣∣PΨ0
(
K<

γ (Rεγδ, Tεγδ)
)
− ‖Ψpp

0 ‖2
∣∣ < ε (38a)

and ∣∣PΨ0
(
K>

δ (Rεγδ, Tεγδ)
)
− ‖Ψac

0 ‖2
∣∣ < ε. (38b)

We prove Theorem 3 in two steps. First we focus on the conditions under
which trajectories become asymptotically free (Theorem 4 below). Those are

the same as for pure scattering wave functions (i.e. q
t
∈ B

Ψ̂out
0

δ1δ2a): if a particle

at some big time T is sufficiently far away from the scattering center ( |q|
T

is

bigger than some minimal ”averaged velocity” a) and its ”momentum” |q|
T

(recall ~ = m = 1) is not too close to a node of Ψ̂out
0 (|Ψ̂out

0 | > δ1 in some
neighborhood of q

t
), the velocity of the particle for times t bigger than or

equal to T is well behaved (in the sense of (48) in Theorem 4 below, resp. of
(35) in Theorem 2) and the particles trajectory becomes asymptotically free
(proof of Theorem 3, resp. Corollary 3).
There are, however, two differences. The first concerns how fast a trajectory
becomes free. While for a pure scattering wave function the convergence of
the ”real” velocity vΨ(QT (q, t), t) along the trajectory QT (q, t) to the ”free”

velocity QT (q,t)
t

is of order t−
1
2 ((35) again), for the more general wave func-

tion Ψ = Ψpp + Ψac it is of order t−β ((48)below), where β := min{α, 1
2
}

depends also on how fast Ψpp and ∇Ψpp decay spatially (q.v. A4). The
convergence speed cannot be faster than for a pure scattering wave function
but it might very well be slower if Ψpp is spread out too much. The second
difference concerns how likely it is that a trajectory becomes free. While
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for a pure scattering wave function the set for which a trajectory becomes

free ( q
t
∈ B

Ψ̂out
0

δ1δ2a) has (depending on a, δ1, δ2, T ) nearly full measure ((33) in
Theorem 2), for Ψ = Ψpp + Ψac this is not true. The spatial support of the
bound part Ψpp stays concentrated around the origin for all times (see (22)),
so the probability that a particle is found near the origin and thus does not

fulfill q
t
∈ B

Ψ̂out
0

δ1δ2a (which would entail |q| > aT ) is not negligible, not even if
the minimal ”averaged velocity” a is so small that (nearly all of) the spatial
support of the scattering part has already left the ball with radius aT . Thus
to get a set of nearly full measure we have to add those initial configurations
(at time T ) that are still inside the ball with radius aT (Definition 4 and (45)
in Theorem 4). Note however, that this radius aT is not so big that the ball
encloses the spatial support of the whole wave function Ψ (in which case the
statement of (45) would be rather trivial) but just that of the bound part
Ψpp ((46) in Theorem 4).
So now we know that at T there are two sets of initial configurations, those
that are outside and those that are inside a ball with a certain radius. But
while we know what kind of trajectories are made by the initial configura-
tions outside the ball (namely asymptotically free ones) we do not yet know
what the trajectories made by the initial configurations inside the ball look
like. This is what we concern ourselves with in the second step of the proof of
Theorem 3. We show that, for T big enough, the probability that a particle
starting inside the above mentioned ball leaves another ball with a slowly
growing radius (in the sense of Theorem 3) can be made arbitrary small.

Lemma 3. Let Ψt = Ψpp
t +Ψac

t with Ψpp
t ∈ Hpp(H) and Ψac

t = e−iHtW+Ψout
0 ∈

Hac(H) with Ψout
0 ∈ S(R3). Assume A2 and A4. Define (for R > 0, T > 0,

γ > 0)

Aγ(R, T ) : =
{
q ∈ R3 | |Q(q, T )| ≤ R ∧ ∃t ≥ T : |Q(q, t)| > R

( t

T

) 1
1+γ

}
=

= {q ∈ R3 | |Q(q, T )| ≤ R} ∩
(
K<

γ (R, T )
)c

.

Then for all ε > 0 and 0 < γ < 2α there exist a > 0 and Tεγ > 0 such that
Theorem 4 holds and

sup
t≥Tεγ

PΨ0
(
Aγ(at, t)

)
< ε. (39)

Remark 11. If Ψ = Ψpp, (38a) tells us that for t → ∞ the probability of

finding a particle outside every ball with radius growing like t
1

1+γ (where γ
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needs to be only arbitrarily smaller than 2α) is zero.
If Ψ = Ψac, (38b) is a sharper form of (36). It adds that for t → ∞ the
probability of finding a particle inside every ball with radius growing linear
in time is zero.

We proceed as in Subsection 4.1 and start with some estimates on the wave
function Ψ and the velocity field vΨ .

Lemma 4. Let Ψt = Ψpp
t +Ψac

t with Ψpp
t ∈ Hpp(H) and Ψac

t = e−iHtW+Ψout
0 ∈

Hac(H) with Ψout
0 ∈ S(R3). Assume A4. Then

(i) for all ε > 0 there is a R > 0 such that (22) holds.

(ii) There exist R2 > 0 and C5 < ∞ such that for all r ∈ R+
0 there are

cr < ∞ and for all T > 0 there are Ci < ∞ (i = 2, 3, 4, 6, 7, ) such that
for all |q| > R2 and t ≥ T∣∣∣∣Ψt(q)

∣∣−t−
3
2

∣∣Ψ̂out
0 (

q

t
)
∣∣∣∣ ≤

≤ C2

|q|(t + |q|)
+ crt

− 5
2

( t

|q|
)r

+ C5|q|−
3
2
−α

(40)

and, if neither Ψt(q) = 0 nor Ψac
t (q) = 0 nor Ψout

t (q) = 0,

∣∣vΨ(q, t)− q

t

∣∣ ≤ [
f1(q, t)t

β− 1
2 + f2(q, t)t

β−α
] t−

3
2
−β

|Ψt(q)|
(41)

with

β := min{α,
1

2
}, f1(q, t) as in Lemma 2 and

f2(q, t) := C5

( t

|q|
) 3

2
+α

[
1 +

t−
3
2∣∣Ψac

t (q)
∣∣
(

f1(q, t)t
− 1

2 + C6

(
1 + C7

t

|q|
))]

.

Proof of Lemma 4.

(i) As mentioned above (22) is a well known feature of all bound wave func-
tions. It holds true if V fulfills the so-called Enss condition (Definition
4.1 in [25]): V is H0- bounded with relative bound less than 1 and the
bounded, monotone decreasing function ‖V (H0 + i)−1F (|q| ≥ R)‖ is
integrable on (0,∞). Here F (|q| ≥ R) denotes the operator of multi-
plication by the characteristic function of the set {q ∈ Ω | |q| ≥ R}.
For n = 3 the Enss condition is necessarily fulfilled if V = O(|q|−1−ε)
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for |q| → ∞ and some ε > 0 (see Example 2.2 in [25] or the discussion
after (3.15) in [19]).
Since we assumed V ∈ (V )4 (22) holds. Moreover in our case it follows
directly from A4.

(ii) Let T > 0. Noting that∣∣∣∣Ψt(q)
∣∣− t−

3
2

∣∣Ψ̂out
0 (

q

t
)
∣∣∣∣ ≤ ∣∣∣∣Ψac

t (q)
∣∣− t−

3
2

∣∣Ψ̂out
0 (

q

t
)
∣∣∣∣ +

∣∣Ψpp
t (q)

∣∣
(27) and A4 immediately give (40).
To get (41) we proceed as follows.
With (28) and A4 we get∣∣vΨ(q, t)− q

t

∣∣ ≤ ∣∣vΨac

(q, t)− q

t

∣∣ +
∣∣vΨ(q, t)− vΨac

(q, t)
∣∣ ≤

≤ f1(q, t)
t−2∣∣Ψt(q)

∣∣(1 +

∣∣Ψpp
t (q)

∣∣∣∣Ψac
t (q)

∣∣)+
+

∣∣Ψt(q)
∣∣−1[∣∣∇Ψpp

t (q)
∣∣ +

∣∣Ψpp
t (q)

∣∣ ∣∣∇Ψac
t (q)

∣∣∣∣Ψac
t (q)

∣∣ ]
≤

≤ t−
3
2
−β∣∣Ψt(q)

∣∣[f1(q, t)tβ− 1
2 +

+ C5

( t

|q|
) 3

2
+α(

1 +
f1(q, t)t

−2 +
∣∣∇Ψac

t (q)
∣∣∣∣Ψac

t (q)
∣∣ )

tβ−α
]

(42)

for all t ≥ T and all |q| > R1.
To get a bound on the second term we note that by (11) (with n = 3)
and (23) ∣∣∇Ψac

t (q)
∣∣ ≤ ∣∣∇ϕ1(q, t)

∣∣ +
∣∣∇ϕ2(q, t)

∣∣ +
∣∣∇ϕ3(q, t)

∣∣
and thus by (11), (12) and (25) there exist R0 > 0, cr < ∞ (r ≥ 0)
and C2 < ∞ such that

∣∣∇Ψac
t (q)

∣∣ ≤ |q|
t

t−
3
2

∣∣Ψ̂out
0 (

q

t
)
∣∣ + t−

3
2

∣∣∇Ψ̂out
0 (

q

t
)
∣∣+

+
C2

|q|(t + |q|)
+ crt

− 5
2

( t

|q|
)r

(43)

for all t ≥ T and |q| > R0.
Since Ψout and thus also q

t
Ψ̂out

0 ( q
t
) and ∇Ψ̂out

0 ( q
t
) are Schwartz functions
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and 1
|q|(t+|q|) ≤

t
|q|t

−2 we get with r = 0∣∣∇Ψac
t (q)

∣∣ ≤
≤ t−

3
2 sup

q
t
∈R3

∣∣q
t
Ψ̂out

0 (
q

t
)
∣∣ + t−

3
2 sup

q
t
∈R3

∣∣∇Ψ̂out
0 (

q

t
)
∣∣+

+ C2
t

|q|
t−2 + c0t

− 5
2 ≤

≤ C6t
− 3

2

(
1 + C7

t

|q|
)

(44)

for some C6 < ∞, C7 < ∞ and all t ≥ T and |q| > R0.
Plugging (44) into (42) and taking R2 := max{R0, R1} gives the desired
result.

�

Since the spatial support of the bound part Ψpp of the wave function stays
concentrated around the scattering center we adjust Definition 3 and Theo-
rem 2 of subsection 4.1 as described above and get:

Definition 4. For Ψout
0 ∈ L2(R3) and δ1 > 0, δ2 > 0 and a > 0 define

B̃
Ψ̂out

0
δ1a := B

Ψ̂out
0

δ1a ∪ {q ∈ R3 | |q| ≤ a}

and

B̃
Ψ̂out

0
δ1δ2a := {q ∈ R3 | Uδ2(q) ⊂ B̃

Ψ̂out
0

δ1(a+δ2)} = B
Ψ̂out

0
δ1δ2a ∪ {q ∈ R3 | |q| ≤ a}.

Theorem 4. Let Ψt = Ψpp
t +Ψac

t with Ψpp
t ∈ Hpp(H) and Ψac

t = e−iHtW+Ψout
0

∈ Hac(H) with Ψout
0 ∈ S(R3). Assume A2 and A4. Then for all ε > 0 there

are a > 0, δ1 > 0, δ2 > 0 and Tε > 0 such that

PΨTε
({

q ∈ R3 | q

Tε

6∈ B̃
Ψ̂out

0
δ1δ2a

})
< ε (45)

and

sup
t≥Tε

∣∣PΨt
(
{q ∈ R3 | |q| ≤ at}

)
− ‖Ψpp

0 ‖2
∣∣ < ε. (46)

Moreover, for all t ≥ Tε and q ∈ R3 such that q
t
∈ B

Ψ̂out
0

δ1a

t
3
2

∣∣Ψout
t (q)

∣∣ >
δ1

2
, t

3
2

∣∣Ψac
t (q)

∣∣ >
δ1

2
and t

3
2

∣∣Ψt(q)
∣∣ >

δ1

2
(47)
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and for all q ∈ R3 such that q
Tε
∈ B

Ψ̂out
0

δ1δ2a

QTε(q, t)

t
∈ Uδ2(

q

Tε

) and∣∣vΨ
(
QTε(q, t), t

)
− QTε(q, t)

t

∣∣ = O(t−β) < δ2

∀ t ≥ Tε. (48)

The proof of Theorem 4 is essentially the same as that of Theorem 2 (resp.
Theorem 1) and can be found in the appendix.

To prove Lemma 3 we use that roughly speaking the quantum probability
flux jΨ across a surface is a measure for the probability that a particle crosses
this surface. Thus we first establish some estimates on the flux.

Lemma 5. Let Ψt = Ψpp
t +Ψac

t with Ψpp
t ∈ Hpp(H) and Ψac

t = e−iHtW+Ψout
0 ∈

Hac(H) with Ψout
0 ∈ S(R3). Assume A4 and let T > 0, ri ∈ R+

0 (i =
1, 2, . . . , 4). Then there exist C8 < ∞, C9 < ∞ and cri

< ∞ such that

sup
t∈R

∣∣jΨpp

(q, t)
∣∣ ≤ C8|q|−3−2α, (49)

∣∣jΨac

(q, t)
∣∣ ≤ cr1

( t

|q|
)r1t−3 + cr2

( t

|q|
)r2 t−

3
2

|q|(t + |q|)
+ cr3

( t

|q|
)r3t−4+

+ cr3

( t

|q|
)2r3t−5 + cr3

( t

|q|
)r3 t−

5
2

|q|(t + |q|)
+ C9

( 1

|q|(t + |q|)
)2

(50)

and for jm = jΨ − jΨpp − jΨac

∣∣jm(q, t)
∣∣ ≤ |q|−

3
2
−α

[
cr4

( t

|q|
)r4t−

3
2 + C9

1

|q|(t + |q|)
+ cr3

( t

|q|
)r3t−

5
2

]
(51)

for all t ≥ T and |q| > R2. Here R2 is as in Lemma 4.

Proof of Lemma 5. (49) we get directly from A4. Since Ψout
0 ∈ S(R3),

by the same argument we used in Remark 4 we get that
(

q
t

)r̃
Ψ̂out

0 ( q
t
) and(

q
t

)r̃∇Ψ̂out
0 ( q

t
) are bounded for every r̃ ∈ R+

0 .
Then (27) (which holds for Ψac) implies that for every r, r̃ ∈ R+

0 there exist
cr < ∞, cr̃ < ∞ and for every T > 0 there exists some C2 < ∞ such that∣∣Ψac

t (q)
∣∣ ≤ t−

3
2

∣∣Ψ̂out
0 (

q

t
)
∣∣ +

C2

|q|(t + |q|)
+ crt

− 5
2

( t

|q|
)r ≤

≤ cr̃t
− 3

2

( t

|q|
)r̃

+
C2

|q|(t + |q|)
+ crt

− 5
2

( t

|q|
)r

(52)
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for all |q| > 0 and t ≥ T .
In exactly the same way (43) yields: For every r, r̃ ∈ R+

0 there exist cr < ∞,
cr̃ < ∞ and for every T > 0 there exists some C2 < ∞ such that

∣∣∇Ψac
t (q)

∣∣ ≤ cr̃t
− 3

2

( t

|q|
)r̃

+
C2

|q|(t + |q|)
+ crt

− 5
2

( t

|q|
)r

(53)

for all t ≥ T and |q| > R0, where R0 is as in Proposition 4.
Then (50) follows immediately from (52) and (53), (51) follows from (52),
(53) and A4. �

Now we can prove Lemma 3.

Proof of Lemma 3. Let ε > 0 and 0 < γ < 2α, let a > 0 and Tε > 0 such
that Theorem 4 holds.
Let t ≥ Tε. Since Q(q, s) is continuous in s (Remark 1) q ∈ Aγ(at, t) implies

that Q(q, s) crosses the moving sphere SRt(s) (with Rt(s) := (at)
(

s
t

) 1
1+γ ) at

least once and outwards in [t,∞). Therefor PΨ0
(
Aγ(at, t)

)
is bounded from

above by the probability that some trajectory crosses SR(s) in any direction
in [t,∞). The latter is given by (see e.g. [7, 15])

∞∫
t

ds

∫
SRt(s)

∣∣jΨ(q, s) · n̂
∣∣ dσ =: Pγ(at, t).

Therefore it suffices to show that sup
t≥Tε

Pγ(at, t) < ε for a small and Tε big

enough8. To do this we split Pγ(at, t) according to the splitting of jΨ implicit

8Note that while Tε depends on a (Tε typically has to be increased if one decreases a)
a is independent of Tε. So we won’t run into trouble even with terms like a−1−2αt−2α ≤
a−1−2αT−2α

ε . In fact we will suppress the dependence on a of such terms and just write
O(t−2α).
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in Lemma 5,

Pγ(at, t) = Ppp
γ (at, t) + Pac

γ (at, t) + Pm
γ (at, t)

with

Ppp/ac
γ (at, t)=

∞∫
t

ds

∫
SRt(s)

∣∣jΨpp/Ψac

(q, s) · n̂
∣∣ dσ

and

Pm
γ (at, t)=

∞∫
t

ds

∫
SRt(s)

∣∣jm(q, t) · n̂
∣∣ dσ,

and show
Ppp

γ (at, t) = O(t−2α), Pm
γ (at, t) = O(t−α) and Pac

γ (at, t) = O(a2) +O(t−
1
2 ).

By (49)

Ppp
γ (at, t) ≤ 4πC8

∞∫
t

Rt(s)
−1−α ds = 4πC8(at)−1−2α 1 + γ

2α− γ
t = O(t−2α).

In exactly the same way we get the desired bounds on Pm
γ (at, t) and Pac

γ (at, t)
since for s ≥ t ≥ Tε and |q| ≥ RTε(Tε) big enough, i.e. for Tε big enough,
(50) implies∣∣jΨac

(q, s)
∣∣ ≤
≤ c0

(
s−3 +

1

|q|(s + |q|)
s−

3
2 + s−4 + s−5 +

1

|q|(s + |q|)
s−

5
2

)
+

+ C9

( 1

|q|(s + |q|)
)2 ≤

≤ C̃1s
−3 + C̃2|q|−2s−

3
2

and (51) implies∣∣jm(q, s)
∣∣ ≤ |q|−

3
2
−α

(
c0s

− 3
2 + C9|q|−1s−1 + c0s

− 5
2

)
≤

≤ C̃3|q|−
3
2
−αs−

3
2 + C9|q|−

5
2
−αs−1.

�
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Remark 12. In the proof of Lemma 3 we used Lemma 5 with ri = 0 and
thus (12) in Proposition 2 with r = 0 only. Thus as in subsection 4.1 we can
replace the condition Ψ̂out

0 ∈ S(R3) by the weaker ones in Remark 6 and still
attain our main result, Theorem 3.

Finally we prove our main result, Theorem 3.

Proof of Theorem 3. Let ε > 0 and 0 < γ < 2α. Let a > 0, δ1 > 0,
δ2 > 0 and Tεγ > 0 such that Theorem 4 and Lemma 3 hold.
Since

{q ∈ R3 | |q| ≤ aTεγ} =

=
{
q ∈ R3 | |q| ≤ aTεγ ∧ ∃t ≥ Tεγ : |QTεγ (q, t)| > aTεγ

( t

Tεγ

) 1
1+γ

}
∪

∪
{
q ∈ R3 | |QTεγ (q, t)| ≤ aTεγ

( t

Tεγ

) 1
1+γ ∀ ≥ Tεγ

}
=

=: AγTεγ (aTεγ, Tεγ) ∪K<
γTεγ

(aTεγ, Tεγ)

and

B̃
Ψ̂out

0
δ1δ2a = B

Ψ̂out
0

δ1δ2a ∪ {q ∈ R3 | |q| ≤ a}

we get

PΨTεγ
({

q ∈ R3 | q

Tεγ

∈ B̃
Ψ̂out

0
δ1δ2a

})
=

= PΨTεγ

({
q ∈ R3 | q

Tεγ

∈ B
Ψ̂out

0
δ1δ2a

}
∪ AγTεγ (aTεγ, Tεγ) ∪K<

γTεγ
(aTεγ, Tεγ)

)
≤

≤ PΨTεγ
(
AγTεγ (aTεγ, Tεγ)

)
+

PΨTεγ
(
K<

γTεγ
(aTεγ, Tεγ) ∪

{
q ∈ R3 | q

Tεγ

∈ B
Ψ̂out

0
δ1δ2a

})
.

Moreover, QTεγ(q, t) = Φt,Tεγ (q) and Q(q, t) = Φt,0(q) (see Subsection 2.2),
so as in the proof of Corollary 1 by equivariance we get

PΨTεγ
(
AγTεγ (aTεγ, Tεγ)

)
= PΨ0

(
Aγ(aTεγ, Tεγ)

)
.

Thus Lemma 3 and (45) in Theorem 4 yield

PΨTεγ
(
K<

γTεγ
(aTεγ, Tεγ) ∪

{
q ∈ R3 | q

Tεγ

∈ B
Ψ̂out

0
δ1δ2a

})
≥

≥ PΨTεγ
({

q ∈ R3 | q

Tεγ

∈ B̃
Ψ̂out

0
δ1δ2a

})
− PΨ0

(
Aγ(aTεγ, Tεγ)

)
>

> 1− 2ε.

(54)



38 4 BOHMIAN TRAJECTORIES IN SCATTERING SITUATIONS

Now let q
Tεγ

∈ B
Ψ̂out

0
δ1δ2a.

Then (48) in Theorem 4 implies that there is a C > 0 such that

∣∣QTεγ (q, t1)

t1
−

QTεγ (q, t2)

t2

∣∣ ≤ t2∫
t1

1

τ

∣∣vΨ(QTεγ (q, τ), τ)−
QTεγ (q, τ)

τ

∣∣ dτ <

< C

t2∫
t1

τ−1−β dτ =
C

β

(
t−β
1 − t−β

2

)
≤ C

β
t−β
1

(55)

for all t2 ≥ t1 ≥ Tεγ.

For δ > 0 define Tεγδ := max
{
Tεγ,

(C(1+β)
βδ

) 1
β
}
. Then (55) yields

∣∣QTεγ (q, t1)

t1
−

QTεγ (q, t2)

t2

∣∣ <
C

β
T−β

εγδ ≤ δ

for all t1, t2 ≥ Tεγδ.

Since δ > 0 was arbitrary this implies that
QTεγ (q,t)

t
is Cauchy, i.e. lim

t→∞

QTεγ (q,t)

t

exists.
Moreover, by (48) and (55),∣∣vΨ(QTεγ (q, t), t)− lim

s→∞

QTεγ (q, s)

s

∣∣ ≤
≤

∣∣vΨ(QTεγ (q, t), t)−
QTεγ (q, t)

t

∣∣ + lim
s→∞

∣∣QTεγ (q, t)

t
−

QTεγ (q, s)

s

∣∣ <

< Ct−β + lim
s→∞

C

β
(t−β − s−β) ≤ 1 + β

β
CT−β

εγδ ≤ δ

(56)

for all t ≥ Tεγδ. Since (48) also implies
QTεγ (q,t)

t
∈ Uδ2

(
q

Tεγ

)
⊂ B

Ψ̂out
0

δ1a and thus

|QTεγ (q, t)| > at for all t ≥ Tεγδ ≥ Tεγ (54) and (56) give

PΨTεγ
(
K<

γTεγ
(aTεγ, Tεγ) ∪ {q ∈ R3 | |QTεγ (q, t)| > at ∧

∧
∣∣vΨ(QTεγ (q, t), t)− lim

s→∞

QTεγ (q, s)

s

∣∣ < δ ∀t ≥ Tεγδ}
)

>

> 1− 2ε.

But Tεγδ ≥ Tεγ and thus K<
γTεγ

(aTεγ, Tεγ) ⊂ K<
γTεγ

(aTεγδ, Tεγδ), so we also get

PΨTεγ
(
K<

γTεγ
(aTεγδ, Tεγδ) ∪ {q ∈ R3 | |QTεγ (q, t)| > at ∧

∧
∣∣vΨ(QTεγ (q, t), t)− lim

s→∞

QTεγ (q, s)

s

∣∣ < δ ∀t ≥ Tεγδ}
)

>

> 1− 2ε.
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By equivariance,

PΨTεγ
(
K<

γTεγ
(aTεγδ, Tεγδ) ∪ {q ∈ R3 | |QTεγ (q, t)| > at ∧

∧
∣∣vΨ(QTεγ (q, t), t)− lim

s→∞

QTεγ (q, s)

s

∣∣ < δ ∀t ≥ Tεγδ}
)

=

= PΨ0
(
K<

γ (aTεγδ, Tεγδ) ∪K>
δ (aTεγδ, Tεγδ)

)
,

so finally
PΨ0

(
K<

γ (aTεγδ, Tεγδ) ∪K>
δ (aTεγδ, Tεγδ)

)
> 1− 2ε. (57)

Thus it is left to show (38a) and (38b).
Again using equivariance,

PΨ0
(
{q ∈ R3 | |Q(q, t)| ≤ at}

)
= PΨt

(
{q ∈ R3 | |q| ≤ at}

)
,

by (46) in Theorem 4 we get

sup
t≥Tεγ

∣∣PΨ0
(
{q ∈ R3 | |Q(q, t)| ≤ at}

)
− ‖Ψpp

0 ‖2
∣∣ < ε. (58)

Noting that

K<
γ (aTεγδ, Tεγδ) ⊂ {q ∈ R3 | |Q(q, t)| ≤ aTεγδ}

and(
K<

γ (aTεγδ, Tεγδ)
)c

= {q ∈ R3 | |Q(q, Tεγδ)| > aTεγδ} ∪ Aγ(aTεγδ, Tεγδ)

(58) gives us

PΨ0
(
K<

γ (aTεγδ, Tεγδ)
)
≤ PΨ0

(
{q ∈ R3 | |Q(q, t)| ≤ aTεγδ}

)
< ‖Ψpp

0 ‖2 − ε

and

PΨ0
(
K<

γ (aTεγδ, Tεγδ)
)

= 1− PΨ0
((

K<
γ (aTεγδ, Tεγδ)

)c) ≥
≥ 1− PΨ0

(
Aγ(aTεγδ, Tεγδ)

)
− PΨ0

(
{q ∈ R3 | |Q(q, Tεγδ)| > aTεγδ}

)
=

= PΨ0
(
{q ∈ R3 | |Q(q, Tεγδ)| ≤ aTεγδ}

)
− PΨ0

(
Aγ(aTεγδ, Tεγδ)

)
>

> ‖Ψpp
0 ‖2 − ε− PΨ0

(
Aγ(aTεγδ, Tεγδ)

)
.

By Lemma 3 the latter gives

PΨ0
(
K<

γ (aTεγδ, Tεγδ)
)

> ‖Ψpp
0 ‖2 − 2ε.
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In the same way (58),

K>
δ (aTεγδ, Tεγδ) ⊂ {q ∈ R3 | |Q(q, t)| > aTεγδ}

and again

K<
γ (aTεγδ, Tεγδ) ⊂ {q ∈ R3 | |Q(q, t)| ≤ aTεγδ}

yield

PΨ0
(
K>

δ (aTεγδ, Tεγδ)
)
≤ PΨ0

(
{q ∈ R3 | |Q(q, t)| > aTεγδ}

)
=

= 1− PΨ0
(
{q ∈ R3 | |Q(q, t)| ≥ aTεγδ}

)
<

< 1−
(
‖Ψpp

0 ‖2 − ε
)

= ‖Ψac
0 ‖2 + ε

and

PΨ0
(
K>

δ (aTεγδ, Tεγδ)
)
≥

≥ PΨ0
(
{q ∈ R3 | |Q(q, t)| ≤ aTεγδ} ∪K>

δ (aTεγδ, Tεγδ)
)
−

− PΨ0
(
{q ∈ R3 | |Q(q, t)| ≤ aTεγδ}

)
≥

≥ PΨ0
(
K<

γ (aTεγδ, Tεγδ) ∪K>
δ (aTεγδ, Tεγδ)

)
−

− PΨ0
(
{q ∈ R3 | |Q(q, t)| ≤ aTεγδ}

)
>

> PΨ0
(
K<

γ (aTεγδ, Tεγδ) ∪K>
δ (aTεγδ, Tεγδ)

)
−

(
‖Ψpp

0 ‖2 + ε
)
.

By (57) the latter gives

PΨ0
(
K>

δ (aTεγδ, Tεγδ)
)

> 1− ‖Ψac
0 ‖2 − 3ε = ‖Ψpp

0 ‖2 − 3ε.

�
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5 First Exit Statistics for Distant Surfaces

and Ψ ∈ Hac(H) +Hpp(H)

In this section we show that the first exit statistics for a distant surface made
by a wave function Ψ + Ψac + Ψpp is mainly given by the scattering part Ψac

of the wave function and thus by the well known expression
∫
C

|Ψ̂out
0 (k)|2 d3k.

Let R be the distance of the surface from the scattering center. Then there is
some time t(R) (with t(R) →∞ as R →∞) such that the first exit statistics
made by Ψ until t(R) are asymptotically the same as those made by Ψac for
all time. Moreover, the first exit statistics made by Ψ for all time differ from
those made by Ψac at most by ‖Ψpp

0 ‖2. So if ‖Ψpp
0 ‖2 is small, for distant

surfaces we get essentially the same exit statistics no matter wether we use
the whole wave function Ψ or only its scattering part Ψac to compute it.
Let Σ ⊂ R2 be a smooth oriented surface and let ∆T = [T, Tf ) be some
time interval. We say a particle is detected on Σ during ∆T , if it crosses Σ
in positive direction during ∆T , where we count first crossings only. Thus
we are interested in the first exit statistics which are completely determined
by the expectation value (with respect to PΨ) of NΨ

det, the number of first
crossings of Σ in positive direction during ∆T , respectively the number of
particles detected on Σ during ∆T 9.
In a scattering situation the (detector) surfaces of interest are spherical and
very far away from the scattering center, so we will consider surfaces RΣ :=
{Rq ∈ R3 | q ∈ Σ}, where Σ ⊂ S1 is measurable and R tends to infinity.
Let H = H0 + V and Ψ = Ψac + Ψpp as in Subsection 4.2. Then in the
sense of Theorem 3 all possible Bohmian trajectories split up into ”bound”
and ”scattering” ones. Moreover, if the scattered particle has a ”bound”
trajectory it will reach a distant sphere SR with radius R → ∞ at the
earliest at some time t(R) proportional to R1+γ (see Figure 2). Therefore the
probability that a particle crosses a spherical surface RΣ before t(R) should,
for R → ∞, be determined by the scattering part Ψac of the wave function
alone. More precisely, it should be determined by the flux-across-surfaces

integral
t(R)∫
T

dt
∫

RΣ

jΨac · n̂ dσ (instead of
t(R)∫
T

dt
∫

RΣ

jΨ · n̂ dσ). Moreover, since

”scattering” trajectories far away from the scattering center become straight
lines pointing outwards radially, they should cross RΣ at most once and
outwards. Thus the first exit statistic for a particle crossing RΣ before t(R)
should be given by the above crossing probability (by the above flux-across-

9Since NΨ
det takes on the values zero and one only, the expectation value indeed deter-

mines the whole statistics and is equal to the probability of NΨ
det = 1.
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surfaces integral).
This is presumably not true for the time after t(R), since one would not
expect a ”bound” trajectory to become a straight line. Recall, however, that
”scattering” trajectories move out linear in time, so what is left inside the
sphere SR at time t(R) is of order ‖Ψpp

0 ‖2 (for R → ∞; compare (38a) of
Theorem 3 and recall t(R) ∼ R1+γ). But surely, if ”what is left inside at
time t(R)” is of order ‖Ψpp

0 ‖2, ”what can come out afterwards” is of order
‖Ψpp

0 ‖2, too10.

t<t(R) t=t(R)

~t

~t
RΣ RΣ

1+γ
1

~t

~t
1

1+γ

Figure 2: When do the bound trajectories reach RΣ?

In line with the above we shall establish the following. Let NΨ
det(T, Tf , R, Σ)

be the number of particles detected on RΣ during [T, Tf ) if the system un-
der consideration is subject to the wave function Ψ = Ψac + Ψpp. Then for
distant surfaces the first exit statistics for a particle crossing RΣ before t(R)
is determined by the scattering part Ψac of the wave function alone11 and

10Here it is important to note that we look at the first exit statistics, i.e. if a trajectory
crosses a surface more than once we count it the first time only.

11The term ‖Ψac
0 ‖2EΨ̃ac(

NΨ̃ac

det (T,∞, R, Σ)
)

in Lemma 6 might at first come as a little
surprise and seem unnecessarily unwieldy. One might rather expect to find something like
EΨac(

NΨac

det (T,∞, R, Σ)
)
. However, since Ψac is not normalized (unless Ψpp = 0) PΨac

, is
not a probability measure and thus EΨac(

NΨac

det (T,∞, R, Σ)
)

is not an expectation value
in the strict sense of the word. So we normalize Ψac, Ψ̃ac := Ψac

‖Ψac
0 ‖ , take the well defined

expectation value EΨ̃ac(
NΨ̃ac

det (T,∞, R, Σ)
)

instead and account for the fact that we really
want to look at the ”statistics” made by Ψac by scaling EΨ̃ac(

NΨ̃ac

det (T,∞, R, Σ)
)

down
with ‖Ψac

0 ‖2.
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thus by
∫

CΣ

‖Ψ̂out
0 (k)‖2 d3k, the probability to find the quantum mechanical

momentum k in the cone CΣ spanned by Σ (Lemma 6). Moreover, what
comes out after t(R) is bounded from above by ‖Ψpp‖2 (Lemma 7).

Lemma 6. Let the potential V ∈ (V )4 and let zero be neither a resonance
nor an eigenvalue of H. Let Ψt = Ψac

t + Ψpp
t with Ψpp

t ∈ Hpp(H) and Ψac
t =

e−iHtW+Ψout
0 ∈ Hac(H) with Ψout

0 ∈ S(R3). Assume A2 and A4. Let Σ ⊂ S1

be measurable. Then for all T ∈ R, c > 0 and 0 < γ < 2α

lim
R→∞

∣∣EΨ
(
NΨ

det(T, tcγ(R), R, Σ)
)
− ‖Ψac

0 ‖2EΨ̃ac(
NΨ̃ac

det (T,∞, R, Σ)
)∣∣ =

= lim
R→∞

[
EΨ

(
NΨ

det(T,∞, R, Σ)
)
−

∫
CΣ

|Ψ̂out
0 (k)|2 d3k

]
= 0,

(59)

where tcγ(R) := max{T, cR1+γ} and Ψ̃ac := Ψac

‖Ψac
0 ‖ .

Lemma 7. Let the potential V ∈ (V )4 and let zero be neither a resonance
nor an eigenvalue of H. Let Ψt = Ψac

t + Ψpp
t with Ψpp

t ∈ Hpp(H) and Ψac
t =

e−iHtW+Ψout
0 ∈ Hac(H) with Ψout

0 ∈ S(R3). Assume A2 and A4. Let Σ ⊂ S1

be measurable. Then for all T ∈ R, c > 0 and 0 < γ < 2α

0 ≤ lim
R→∞

EΨ
(
NΨ

det(tcγ(R),∞, R, Σ)
)

=

= lim
R→∞

[
EΨ

(
NΨ

det(T,∞, R, Σ)
)
− EΨ

(
NΨ

det(T, tcγ(R), R, Σ)
)]
≤

≤ ‖Ψpp
0 ‖2,

(60)

where tcγ(R) := max{T, cR1+γ}.

Lemma 6 and Lemma 7 together immediately yield the main result of this
section. The first exit statistics for a distant surface RΣ of a wave func-
tion Ψ = Ψac + Ψpp and that of its scattering part Ψac, which is given by∫
CΣ

|Ψ̂out
0 (k)|2 d3k, differ only after some big time t(R) and the difference is

bounded from above by ‖Ψpp‖2.

Theorem 5. Let the potential V ∈ (V )4 and let zero be neither a resonance
nor an eigenvalue of H. Let Ψt = Ψac

t + Ψpp
t with Ψpp

t ∈ Hpp(H) and Ψac
t =

e−iHtW+Ψout
0 ∈ Hac(H) with Ψout

0 ∈ S(R3). Assume A2 and A4. Let Σ ⊂ S1
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be measurable. Then for all T ∈ R, c > 0 and 0 < γ < 2α

0 ≤ lim
R→∞

EΨ
(
NΨ

det(tcγ(R),∞, R, Σ)
)

=

= lim
R→∞

[
EΨ

(
NΨ

det(T,∞, R, Σ)
)
− ‖Ψac

0 ‖2EΨ̃ac(
NΨ̃ac

det (T,∞, R, Σ)
)]

=

= lim
R→∞

[
EΨ

(
NΨ

det(T,∞, R, Σ)
)
−

∫
CΣ

|Ψ̂out
0 (k)|2 d3k

]
≤

≤ ‖Ψpp
0 ‖2,

(61)

where tcγ(R) := max{T, cR1+γ} and Ψ̃ac := Ψac

‖Ψac
0 ‖ .

To prove Lemma 6 and Lemma 7 we proceed as follows. First we give a
rigorous definition of the number of detected particles NΨ

det and elaborate on
the connection of EΨ(NΨ

det) to the flux-across-surfaces integrals (Definition
5, Definition 6, Proposition 5 and Proposition 6). This part of the proof is
nothing new ([7, 15]). We will mainly follow [15] but adapt some of their
definitions to our need of lesser generality and to conventions used earlier
in this text. Next we prove a flux-across-surfaces theorem (FAST) for Ψ =
Ψac + Ψpp to help us express EΨ

(
NΨ

det(T, t(R), R, Σ)
)

in terms of |Ψ̂out
0 |2.

Lemma 8 (FAST). Let the potential V be in (V )4 and let zero be neither
a resonance nor an eigenvalue of H. Let Ψ = Ψac

t + Ψpp
t with Ψpp

t ∈ Hpp(H)
and Ψac

t = e−iHtW+Ψout
0 ∈ Hac(H) with Ψout

0 ∈ S(R3). Assume A4 and let
Σ ⊂ S1 be measurable. Then for all T ∈ R, c > 0 and 0 < γ < 2α

lim
R→∞

tcγ(R)∫
T

dt

∫
RΣ

jΨ(q, t) · n̂ dσ = lim
R→∞

tcγ(R)∫
T

dt

∫
RΣ

∣∣jΨ(q, t) · n̂
∣∣ dσ =

=

∫
CΣ

|Ψ̂out
0 (k)|2 d3k

(62)

where tcγ(R) := max{T, cR1+γ}.

This finally gives us the means to show Lemma 6 and Lemma 7.
We start with some definitions.

Definition 5. Assume A1-A3. Let Σ ⊂ S1 be measurable and Tf > T ∈ R.
Define RΣ := {Rq ∈ R3 | q ∈ Σ}.
We define the number of positive (negative) crossings NΨ

±(T, Tf , RΣ) of RΣ
during [T, Tf ) by

NΨ
±(T, Tf , RΣ) : R3 −→ N0
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with

NΨ
±(T, Tf , RΣ)(q) :=

= |{t ∈ [T, Tf ) | Q(q, t) ∈ RΣ ∧ ∃ε > 0 : sup
t−ε<s<t

|Q(q, s) ≶ R}|

if q ∈ ΩT , and

NΨ
±(T, Tf , RΣ)(q) := 0

if q ∈ R3\ΩT . Here |A| denotes the cardinality of the set A.
Then the number of total crossings is given by

NΨ(T, Tf , RΣ) : R3 −→ N0,

NΨ(T, Tf , RΣ) := NΨ
+(T, Tf , RΣ) + NΨ

−(T, Tf , RΣ)

and the number of signed crossings by

NΨ
sig(T, Tf , RΣ) : R3 −→ Z,

NΨ
sig(T, Tf , RΣ) := NΨ

+(T, Tf , RΣ)− NΨ
−(T, Tf , RΣ).

Then one can show the following ([7] Lemma 4.2 and pp.34-37; see also
Section 4 in [15]).

Proposition 5. Assume A1-A3. Let Σ ⊂ S1 be measurable and Tf > T ∈ R.
Define RΣ := {Rq ∈ R3 | q ∈ Σ}. Then NΨ(T, TF , RΣ) and NΨ

sig(T, TF , RΣ)
are random variables on the space R3 of initial configurations.
Moreover

EΨ
(
NΨ

sig(T, TF , RΣ)
)

=

Tf∫
T

dt

∫
RΣ

jΨ(q, t) · n̂ dσ (63)

and

EΨ
(
NΨ(T, TF , RΣ)

)
=

Tf∫
T

dt

∫
RΣ

|jΨ(q, t) · n̂| dσ. (64)

Remark 13. In Definition 5 and Proposition 5 we use slightly different
assumptions on H and Ψ than [7] and [15]. Note however, that what is used
in their proof of Proposition 5 (and Proposition 6 below) is the regularity
of the solutions Q(q, t) of (4) that follows in the context of the proof of
almost sure global existence of Bohmian mechanics. So wether one uses their
assumptions (which in fact are the assumptions of Remark 3) or A1-A3 is
merely a question of preference.
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Now we can define the number of detected particles NΨ
det.

Definition 6. Assume A1-A3. Let Σ ⊂ S1 be measurable and Tf > T ∈ R.
Define RΣ := {Rq ∈ R3 | q ∈ Σ}.
We define the first exit time when a trajectory leaves the ball BR (crosses the
sphere SR outwards) by

tex(T, R) : Ω −→ [T,∞],

tex(T,R)(q) := max{t ≥ T | |Q(q, t)| = R ∧ sup
T≤s<t

|Q(q, s)| < R},

where we set tex(T,R) = ∞ if the above set is empty.
Then the number of particles detected on RΣ during [T, Tf ) is defined by

NΨ
det(T, Tf , R, Σ) : R3 −→ {0, 1},

NΨ
det(T, Tf , R, Σ)(q) :=

{
1 if tex(T,R) ∈ [T, Tf ) and Q(q, tex) ∈ RΣ,

0 else.

To connect EΨ(NΨ
det) with the flux-across-surfaces integrals of Proposition 5

we exploit that the difference between the number of first positive crossings
NΨ

det and the number of signed crossings NΨ
sig for the closed surface SR is

bounded by the number of negative crossings NΨ
− = 1

2
(NΨ − NΨ

sig) and get
with the help of Proposition 5 (see [15] for details)

Proposition 6. Assume A1-A3. Let Σ ⊂ S1 be measurable and Tf > T ∈ R.
Define RΣ := {Rq ∈ R3 | q ∈ Σ}. Then∣∣EΨ

(
NΨ

sig(T, Tf , RΣ)
)
− EΨ

(
NΨ

det(T, Tf , RΣ)
)∣∣ ≤

≤ 1

2

Tf∫
T

dt

∫
RΣ

(
|jΨ(q, t) · n̂| − jΨ(q, t) · n̂

)
dσ.

(65)

With this and Lemma 8 we can prove Lemma 6 and Lemma 7.

Proof of Lemma 6. Let T ∈ R, c > 0 and 0 < γ < 2α. Using (62) and
(65) we get

lim
R→∞

EΨ
(
NΨ

det(T, tcγ(R), R, Σ)
)

= lim
R→∞

EΨ
(
NΨ

sig(T, tcγ(R), RΣ)
)
.

Moreover (63) and again (62) yield

lim
R→∞

EΨ
(
NΨ

sig(T, tcγ(R), RΣ)
)

= lim
R→∞

tcγ(R)∫
T

dt

∫
RΣ

jΨ(q, t) · n̂ dσ =

=

∫
CΣ

|Ψ̂out
0 (k)|2 d3k.
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Thus

lim
R→∞

EΨ
(
NΨ

det(T, tcγ(R), R, Σ)
)

=

∫
CΣ

|Ψ̂out
0 (k)|2 d3k. (66)

In exactly the same way we utilize the FAST for pure scattering wave func-
tions ([31]: 2.1 Theorem, p.3)

lim
R→∞

∞∫
T

dt

∫
RΣ

jΨac

(q, t) · n̂ dσ = lim
R→∞

∞∫
T

dt

∫
RΣ

∣∣jΨac

(q, t) · n̂
∣∣ dσ =

=

∫
CΣ

|Ψ̂out
0 (k)|2 d3k

(67)

to get

lim
R→∞

EΨ̃ac(
NΨ̃ac

det (T,∞, R, Σ)
)

=

∫
CΣ

| ˆ̃Ψout
0 (k)|2 d3k.

But by the definition of Ψ̃ac we have | ˆ̃Ψout
0 (k)|2 = 1

‖Ψac
0 ‖2 |Ψ̂

out
0 (k)|2 and thus

lim
R→∞

EΨ̃ac(
NΨ̃ac

det (T,∞, R, Σ)
)

=
1

‖Ψac
0 ‖2

∫
CΣ

|Ψ̂out
0 (k)|2 d3k. (68)

This and (66) immediately give (59). �

Proof of Lemma 7. Let T ∈ R, c > 0 and 0 < γ < 2α.
The equality in (60) is trivial. Since NΨ

det(tcγ(R),∞, R, Σ)(q) ∈ {0, 1} for all
q ∈ R3, so is the first inequality. Thus it is left to show

lim
R→∞

EΨ
(
NΨ

det(tcγ(R),∞, R, Σ)
)
≤ ‖Ψpp

0 ‖2.

Since Σ ⊂ S1, NΨ
det(tcγ(R),∞, R, Σ)(q) ≤ NΨ

det(tcγ(R),∞, R, S1) for all q ∈ R3

and thus also

lim
R→∞

EΨ
(
NΨ

det(tcγ(R),∞, R, Σ)
)
≤ lim

R→∞
EΨ

(
NΨ

det(tcγ(R),∞, R, S1)
)

=

= lim
R→∞

[
EΨ

(
NΨ

det(T,∞, R, S1)
)
− EΨ

(
NΨ

det(T, tcγ(R), R, S1)
)]
≤

≤ 1− lim
R→∞

EΨ
(
NΨ

det(T, tcγ(R), R, S1)
)
,

(69)

where in the last step we again used NΨ
det(T,∞, R, S1)(q) ∈ {0, 1} for all

q ∈ R3.
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However, by (66) and Dollard’s scattering into cones theorem (equation
(1))we know that

lim
R→∞

EΨ
(
NΨ

det(T, tcγ(R), R, S1)
)

=

∫
R3

|Ψ̂out
0 (k)|2 d3k =

= lim
t→∞

∫
R3

|Ψac
t (q)|2 d3q = lim

t→∞
‖Ψac

t ‖2 = ‖Ψac
0 ‖2.

Putting this into (69) yields the desired result. �

Finally it is left to show Lemma 8.

Proof of Lemma 8. It suffices to show (62) for some fixed T > 0 since the
set for which (62) holds as well as the right hand side of (62) is invariant
under finite time shifts12:

lim
R→∞

tcγ(R)∫
t̃0

dt

∫
RΣ

jΨ(q, t) · n̂ dσ = lim
R→∞

tcγ(R)∫
T

dt

∫
RΣ

jΨ(q, t + t̃0 − T ) · n̂ dσ =

=

∫
CΣ

|e−i k2

2
(t̃0−T )Ψ̂out

0 (k)|2 d3k =

∫
CΣ

|Ψ̂out
0 (k)|2 d3k.

Now let T > 0, c > 0. Since tcγ(R)
R→∞−→ ∞ for all 0 < γ < 2α (67), the

FAST for pure scattering wave functions, yields

lim
R→∞

tcγ(R)∫
T

dt

∫
RΣ

jΨac

(q, t) · n̂ dσ = lim
R→∞

tcγ(R)∫
T

dt

∫
RΣ

∣∣jΨac

(q, t) · n̂
∣∣ dσ =

=

∫
CΣ

|Ψ̂out
0 (k)|2 d3k.

To prove (62) it therefor suffices to show that jΨ − jΨac
does not contribute

to the flux across distant surfaces during [T, tcγ(R)), i.e.

lim
R→∞

tcγ(R)∫
T

dt

∫
SR

∣∣(jΨ(q, t)− jΨac

(q, t)
)
· n̂

∣∣ dσ = 0. (70)

12Invariance of S(R3) was established in Remark 7, for A4 it is trivial.
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Let 0 < γ < 2α and R > R2 such that cR1+γ ≥ T (where R2 is as in Lemma
4). Using

∣∣(jΨ − jΨac) · n̂∣∣ ≤ ∣∣jΨpp
∣∣ +

∣∣jm

∣∣ and the definition of tcγ(R), (49)
and (51) (with r3 = r4 = 1 and 1

|q|(t+|q|) ≤ |q|−1t−1) yield

tcγ(R)∫
T

dt

∫
SR

∣∣(jΨ(q, t)− jΨac

(q, t)
)
· n̂

∣∣ dσ ≤

≤
tcγ(R)∫
T

dt

∫
SR

[
C8R

−3−2α + R− 3
2
−α

(
c1R

−1(t−
1
2 + t−

3
2 ) + C9R

−1t−1
)]

dσ =

=

tcγ(R)∫
T

dt

∫
SR

[
O

(
R−3−2α

)
+O

(
R− 5

2
−αt−

1
2

)]
dσ =

= O
(
R−1−2αtcγ(R)

)
+O

(
R− 1

2
−2αtcγ(R)

1
2

)
= O(R− 1

2
(2α−γ))

Thus (70) holds and we are done. �

Remark 14. If we use the FAST for pure scattering wave functions under
the condition it was formulated with in [18] (namely Ψac

0 ∈ G), we can replace
the condition Ψ̂out

0 ∈ S(R3) in the results of this section by:

(i) Ψac
0 ∈ G :=

⋃
t∈R

e−iHtf with f : R3 → R3 such that

f ∈ Hac(H),

Hmf ∈ D(H), m ∈ {0, 1, . . . , 7},
(1 + |q|)2Hmf(q) ∈ L2(R3), m ∈ {0, 1, . . . , 8},
(1 + |q|)4Hmf(q) ∈ L2(R3), m ∈ {0, 1, . . . , 3}.

(ii) There is some C < ∞, ε > 0 such that

|Ψout
0 (q)| ≤ C(1 + |q|)−5−ε,

|∂η
q Ψout

0 (q)| ≤ C(1 + |q|)−5−ε, |η| = 1,

|∂η
q Ψout

0 (q)| ≤ C(1 + |q|)−4−ε, |η| = 2.

Here η is a multi-index.

The conditions on Ψout
0 assure that (12) in Proposition 2 holds for r = 1

which was all we used it with (via (51) of Lemma 5).
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6 Appendix

Proof of Theorem 2. Let ε > 0, Tε > 0 and C
Ψ̂out

0
δ1δ2a(Tε) := {q ∈ R3 | q

Tε
6∈

B
Ψ̂out

0
δ1δ2a}. Then

PΨTε
(
C

Ψ̂out
0

δ1δ2a(Tε)
)
≤

≤
∫

C
Ψ̂out

0
δ1δ2a(Tε)

T−3
ε |Ψ̂out

0 (
q

Tε

)|2 d3q +

∫
R3

|T−3
ε |Ψ̂out

0 (
q

Tε

)|2 − |ΨTε(q)|2| d3q ≤

≤
∫

(B
Ψ̂out

0
δ1δ2a)c

|Ψ̂out
0 (k)|2 d3k +

∫
R3

|T−3
ε |Ψ̂out

0 (
q

Tε

)|2 − |ΨTε(q)|2| d3q,

(71)

where k := q
Tε

.
To get a bound on the first term we note that

(B
Ψ̂out

0
δ1δ2a)

c = (B
Ψ̂out

0
δ1a )c ∪ {q ∈ R3 | q ∈ B

Ψ̂out
0

δ1a ∧ Uδ2 6⊂ B
Ψ̂out

0
δ1a } =

=: (B
Ψ̂out

0
δ1a )c ∪D

Ψ̂out
0

δ1δ2a

and

(B
Ψ̂out

0
δ1a )c ⊂ (A

Ψ̂0
δ1

)c ∪ {q ∈ R3 | |q| ≤ a}.

Thus∫
(B

Ψ̂out
0

δ1δ2a)c

|Ψ̂out
0 (k)|2 d3k ≤

≤
∫

(A
Ψ̂0
δ1

)c

|Ψ̂out
0 (k)|2 d3k +

∫
|k|≤a

|Ψ̂out
0 (k)|2 d3k +

∫
D

Ψ̂out
0

δ1δ2a

|Ψ̂out
0 (k)|2 d3k.

We note that Ψ̂out
0 is square integrable, so the first term can be made smaller

than ε
4

by choosing δ1 small enough (as in the proof of Theorem 1), the second

by choosing a small enough. Since Ψ̂out
0 ∈ S(R3) also implies that Ψ̂out

0 (k) is

continuous in k, B
Ψ̂out

0
δ1a is open and the third integral can be made smaller

than ε
4

by choosing δ2 small enough.
To get a bound on the second term in (71) we use that by (26)∫

R3

|T−3
ε |Ψ̂out

0 (
q

Tε

)|2 − |ΨTε(q)|2| d3q ≤ ε

4
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for all Tε big enough.
Thus (33) holds for all Tε big enough.
Since Ψout

t obeys the free time evolution the first part of (34) follows imme-

diately from (17). Noting that q
t
∈ B

Ψ̂out
0

δ1a implies t
|q| < 1

a
and |Ψout

0 ( q
t
)| > δ1

the second part of (34) is a direct consequence of (27) (with r = 0 and Tε

big enough):

t
3
2 |Ψt(q)| ≥ |Ψ̂out

0 (
q

t
)| − C2

|q|(t + |q|)
t

3
2 − c0t

−1 >

> δ1 − C2t
−

2
t

|q|
− c0t

−1 > δ1 −
C2

a
t−

1
2 − c0t

−1 >
δ1

2

Now let q ∈ R3\{0} such that q
Tε
∈ B

Ψ̂out
0

δ1δ2a. Suppose there exists some t1 > Tε

such that
QTε (q,t1)

t1
6∈ Uδ2(

q
Tε

). Since QTε(q, t) is continuous in t (Remark 1),

this implies that the first exit time tex := max{s > Tε | QTε (q,s)

s
6∈ Uδ2(

q
Tε

) ∧
QTε (q,t)

t
∈ Uδ2(

q
Tε

) ∀Tε ≤ t < s} exists and
∣∣QTε (q,tex)

tex
− q

Tε

∣∣ = δ2. Moreover
QTε (q,τ)

τ
∈ B

Ψ̂out
0

δ1a (i.e. (34) holds), and τ
QTε (q,τ)

< 1
a

for all Tε ≤ τ < tex. For

Tε big enough the latter also implies QTε(q, τ) > R0, i.e. (28) holds (with R0

as in Lemma 2).
Then by (28) and (34)∣∣∣∣vΨ

(
QTε(q, t), t

)
− QTε(q, t)

t

∣∣∣∣ ≤
≤

[
C3

(
1 +

2C4

aδ1

t−1

)
+

C2

a

]
2

δ1

t−
1
2 ≤ Ct−

1
2 <

δ2

2

∀Tε ≤ τ < tex.

So finally for Tε big enough∣∣∣∣QTε(q, tex)

tex
− q

Tε

∣∣∣∣ ≤
≤

tex∫
Tε

1

τ

∣∣∣∣vΨ
(
QTε(q, τ), τ

)
− QTε(q, τ)

τ

∣∣∣∣ dτ ≤ C ′

tex∫
Tε

τ−
3
2 dτ ≤ 2C ′T

− 1
2

ε < δ2,

which is a contradiction.
Hence (35) holds. �
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Proof of Theorem 4. Let ε > 0.
Since

|Ψt(q)|2 = |Ψac
t (q)|2 + |Ψpp

t (q)|2 + 2Re(Ψac
t (q)∗Ψpp

t (q)) ≤
≤ |Ψac

t (q)|2 + |Ψpp
t (q)|2 + 2|Ψac

t (q)||Ψpp
t (q)|

(72)

and

(B̃
Ψ̂out

0
δ1δ2a)

c = (B
Ψ̂out

0
δ1δ2a)

c ∩ {q ∈ R3 | |q| > a}

we get by Schwarz inequality

PΨTε
({

q ∈ R3 | q

Tε

6∈ B̃
Ψ̂out

0
δ1δ2a

})
≤

≤
∫

C
Ψ̂out

0
δ1δ2a(Tε)

|Ψac
Tε

(q)|2 d3q +

∫
|q|>aTε

|Ψpp
Tε

(q)|2 d3q+

+ 2

[ ∫
C

Ψ̂out
0

δ1δ2a(Tε)

|Ψac
Tε

(q)|2 d3q

] 1
2
[ ∫
|q|>aTε

|Ψpp
Tε

(q)|2 d3q

] 1
2

,

(73)

where C
Ψ̂out

0
δ1δ2a(Tε) := {q ∈ R3 | q

Tε
6∈ B

Ψ̂out
0

δ1δ2a} is the same set as in the proof of
Theorem 2.
In the same way we get for t ≥ Tε

PΨt
(
{q ∈ R3 | |q| ≤ at}

)
≤

≤
∫

|q|≤at

|Ψac
t (q)|2 d3q +

∫
R3

|Ψpp
t (q)|2 d3q+

+ 2

[ ∫
|q|≤at

|Ψac
t (q)|2 d3q

] 1
2
[ ∫

R3

|Ψpp
t (q)|2 d3q

] 1
2

≤

≤
∫

|q|≤at

|Ψac
t (q)|2 d3q + ‖Ψpp

t ‖2 + 2‖Ψpp
t ‖

[ ∫
|q|≤at

|Ψac
t (q)|2 d3q

] 1
2

≤

≤ ‖Ψpp
0 ‖2 +

∫
|q|≤at

|Ψac
t (q)|2 d3q + 2

[ ∫
|q|≤at

|Ψac
t (q)|2 d3q

] 1
2

(74)
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and

PΨt
(
{q ∈ R3 | |q| ≤ at}

)
≥

≥ PΨt
(
{q ∈ R3 | |q| ≤ aTε}

)
≥ 1− PΨt

(
{q ∈ R3 | |q| > aTε}

)
≥

≥ 1− ‖Ψac
t ‖2 −

∫
|q|>aTε

|Ψpp
t (q)|2 d3q−

− 2‖Ψac
t ‖

[ ∫
|q|>aTε

|Ψpp
t (q)|2 d3q

] 1
2

≥

≥ ‖Ψpp
0 ‖2 −

∫
|q|>aTε

|Ψpp
t (q)|2 d3q −

[ ∫
|q|>aTε

|Ψpp
t (q)|2 d3q

] 1
2

.

(75)

By (33)
∫

C
Ψ̂out

0
δ1δ2a(t)

|Ψac
t (q)|2 d3q can be made arbitrary small if a, δ1 and δ2 are

small enough and Tε (and thus t ≥ Tε) is big enough. Since {q ∈ R3 |
|q| ≤ at} ⊂ C

Ψ̂out
0

δ1δ2a(t) this implies, that
∫

|q|≤at

|Ψac
t (q)|2 d3q, too, can be made

arbitrary small (in fact it suffices to suitably decrease a and increase Tε). By
Lemma 4 (i)

∫
|q|>at

|Ψpp
t (q)|2 d3q can be made arbitrary small if at ≥ aTε is

big enough, i.e. by increasing Tε appropriately. Thus (45) holds by (73) and
(46) holds by (74) and (75).

Now let t ≥ Tε and q ∈ R3\{0} such that q
t
∈ B

Ψ̂out
0

δ1a . Then by (34) the first
and second part of (47) hold.

Moreover, since |q|
t

> a (which for Tε big enough implies |q| > R2 with R2 as

in Lemma 4),
∣∣Ψ̂out

0 ( q
t
)
∣∣ > δ1 and 1

|q|(t+|q|) ≤
t
|q|t

−2, (40) with r = 0 gives us

t
3
2

∣∣Ψt(q)
∣∣ > δ1 −

C2

a
t−

1
2 − c0t

−1 − C5

a
3
2
+α

t−α >
δ1

2

for Tε big enough.

Now let q ∈ R3\{0} such that q
Tε
∈ B

Ψ̂out
0

δ1δ2a and suppose that the first exit time

tex := max{s > Tε | QTε (q,s)

s
6∈ Uδ2(

q
Tε

) ∧ QTε (q,t)

t
∈ Uδ2(

q
Tε

) ∀Tε ≤ t < s}
exists. Then, by continuity of QTε(q, t) (Remark 1),

∣∣QTε (q,tex)

tex
− q

Tε

∣∣ = δ2.

Moreover
QTε (q,t)

t
∈ B

Ψ̂out
0

δ1a for all Tε ≤ t < tex. By (41) and (47) this implies
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that there is some C < ∞ such that for all Tε ≤ t < tex∣∣vΨ(QTε(q, t), t)−
QTε(q, t)

t

∣∣ ≤
≤ 2

δ1

t−β

{
tβ−

1
2

[
C3

(
1 +

2C4

aδ1

t−1
)

+
C2

a

]
+

+ tβ−α C5

a
3
2
+α

[
1 +

2

δ1

((
C3

(
1 +

2C4

aδ1

t−1
)

+
C2

a

)
t−

1
2 + C6

(
1 +

C7

a

))]}
≤

≤ Ct−β.

Thus for Tε big enough

∣∣QTε(q, tex)

tex
− q

Tε

∣∣ ≤ tex∫
Tε

1

τ

∣∣vΨ(QTε(q, τ), τ)− QTε(q, τ)

τ

∣∣ dτ ≤

≤ C

t−ex∫
Tε

τ−1−β dτ ≤ C

β
T−β

ε < δ2.

But this is a contradiction. �
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[15] Dürr, D., Goldstein, S., Moser, T. and Zhangh̀ı, N.: A microscopic
derivation of the scattering cross section, In preparation.
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Ich möchte
”
meinen Jungs“ für ein Jahr danken, in dem ich so viel gelernt

und gelacht habe wie schon lange nicht mehr.
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