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Approximate Wavefunctions from the
Dirac-Frenkel Variational Principle

C. Lubich, From Quantum to Classical
Molecular Dynamics: Reduced Models
and Numerical Analysis, Zürich (2008)

Dirac-Frenkel (DF) variational principle:

〈δΨ| Ĥ− i ∂

∂ t |Ψ〉= 0 dynamical equation for Ψ̇

where δΨ ∈TΨM (tangent space wrt the approximate
manifold M on which the wavefunction is defined)
Dirac 1930, Frenkel 1934, McLachlan 1964

• the time derivative is then given by

Ψ̇ = P(Ψ) 1
i ĤΨ

where P(Ψ) projects onto the tangent space

• the residual is minimized: ||Ψ̇− 1
i ĤΨ||= min

• norm conservation, energy conservation

• symplectic flow
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Unitary Dynamics in Many Dimensions: MCTDH

Ψ(r, t) = ∑
J

AJ(t) ΦJ(r, t)≡
n1

∑
j1=1

. . .
nN

∑
jN=1

Aj1...jN (t)ϕ
(1)
j1

(r1, t) . . .ϕ
(N)
jN (rN , t)

• Multi-Configuration Time-Dependent Hartree: tensor approximation scheme
Meyer, Manthe, Cederbaum, Chem. Phys. Lett. 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)

• EoM’s from the Dirac-Frenkel variational principle: 〈δΨ| Ĥ− i ∂

∂ t |Ψ〉= 0
• MCTDH takes one to 50-100 modes; exponential scaling alleviated

• restriction on the form of the potential: sums over products

• related multi-layer variant (ML-MCTDH) goes up to 1000 modes
Wang, Thoss, J. Chem. Phys. 119, 1289 (2003), Manthe, J. Chem. Phys. 128, 164116 (2008), Vendrell, Meyer, ibid 134, 044135 (2011)

• related MCTDH-F (fermion) and MCTDH-B (boson) methods
Kato, Kono, Chem. Phys. Lett. 392, 533 (2004), Nest, Klamroth, Saalfrank, J. Chem. Phys. 122, 124102 (2005)
Alon, Streltsov, Cederbaum, Phys. Lett. A 362, 453 (2007)

• density matrix variant
Raab, Burghardt, Meyer, J. Chem. Phys. 111, 8759 (1999)

• hybrid approaches: e.g., Gaussian-based variant (G-MCTDH, vMCG)
Burghardt, Meyer, Cederbaum, J. Chem. Phys. 111, 2927 (1999), Worth, Burghardt, Chem. Phys. Lett. 368, 502 (2003)
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MCTDH – Equations of Motion

Coupled system of coefficient equations and low-dimensional non-linear equations
for single-particle functions (SPFs) ϕ(κ):

coefficients:

SPFs:

i
dAJ

dt
= ∑

L
〈ΦJ |H|ΦL〉AL

i
∂ϕ(κ)

∂ t
=

(
1̂− P̂(κ)

)[
ρ
(κ)
]−1

Ĥ(κ)
ϕ
(κ)

Meyer, Manthe, Cederbaum, CPL 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)

• P̂(κ) = ∑j |ϕ
(κ)
j 〉〈ϕ

(κ)
j | is the time-dependent projector on the κth subspace

• Ĥ(κ)
ij = 〈ψ(κ)

i |Ĥ|ψ
(κ)
j 〉 are mean-field Hamiltonian matrix elements

• ρ
(κ)
ij = 〈ψ(κ)

i |ψ
(κ)
j 〉 are reduced density matrix elements in the κth subspace

• here, we introduced the single-hole functions (SHFs): Ψ = ∑j ϕ
(κ)
j ψ

(κ)
j

• recent approaches to “repair” singularity problem ([ρ(κ)]−1)
Manthe, J. Chem. Phys. 142, 244109 (2015)

Lubich, Appl. Math. Res. Express 2, 311-328 (2015), Kloss, Burghardt, Lubich. J. Chem. Phys., 146, 174107 (2017)
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Implementation of Projector Splitting Integrator for MCTDH
Lubich, Appl. Math. Res. eXpress 2015, 311 (2015), Kloss, Burghardt, Lubich, J. Chem. Phys. 146, 174107 (2017).

MCTDH equations in tensor notation:

iĊ = ∑
q

aqC×d
n=1Hq

spf ,n (1)

U̇n = ∑
q

aq (I−Pn)Hq
prim,nUnH

q
nρ
−1
n (2)

To obtain Lubich’s projector-splitting scheme, replace (2) with the following,
where Kn = UnSn can be understood as modified SPFs that are not orthonormal –
while the single-hole functions (SHFs) have been orthogonalized,

iK̇n = ∑
q

aqHq
prim,nUnSnH

q
n

iṠn = ∑
q

aqHq
SPF,nSnH̃

q
n

• The inverse of the density matrix no longer appears!
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Gaussian-based MCTDH (G-MCTDH)

Burghardt, Meyer, Cederbaum, J. Chem. Phys. 111, 2927 (1999)

Ψ(r, t) = ∑
J

AJ(t)ΦJ(r, t) ; ΦJ(r, t) =
M

∏
κ=1

ϕ
(κ)
jκ (rκ , t)︸ ︷︷ ︸

SPFs

P

∏
κ=M+1

g(κ)jκ (rκ , t)︸ ︷︷ ︸
GWPs

Gaussian
wavepackets

(GWP)

system-bath type
dynamics

on-the-fly ("direct")
dynamics

Ψ(r, t) = ∑j Aj(t)gj(r, t) (vMCG) Burghardt et al., JCP 119, 5364 (2003), 129, 174104 (2008)

variational Multi-Configurational Gaussians
Worth, Burghardt, Chem. Phys. Lett. 368, 502 (2003), Richings et al., Int. Rev. Phys. Chem., 34, 265 (2015)

Related approaches:

– variational GWPs: Metiu & co (1985), Martinazzo & co (2007): LCSA (Local Coherent State
Approximation)

– non-variational GWPs: Mart́ınez & co (1996): FMS (Full Multiple Spawning); Shalashilin & co (2000):
CCS (Coupled Coherent States); Batista & co (2003): MP/SOFT (Matching Pursuit)
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G-MCTDH = Quantum-Semiclassical MCTDH

modes

}{ϕ(κ)

primary

secondary

modes

{g(κ)}

modes

}{χ(κ)

dissipative

Ψ(r, t) = ∑
J

AJ(t) ΦJ(r, t)

with ΦJ(r, t) =
M

∏
κ=1

ϕ
(κ)
jκ (rκ , t)

Multi-Configuration Time-Dependent Hartree
Meyer et al., CPL 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)

Gaussian-based hybrid method: G-MCTDH

ΦJ(r, t) =
M

∏
κ=1

ϕ
(κ)
jκ (rκ , t)︸ ︷︷ ︸

primary nodes

P

∏
κ=M+1

g(κ)jκ (rκ , t)︸ ︷︷ ︸
secondary modes

Burghardt, Meyer, Cederbaum, J. Chem. Phys. 111, 2927 (1999)

Burghardt, Giri, Worth J. Chem. Phys. 129, 174104 (2008)

CECAM 2017 – Seeking Synergy between Dynamics & Statistics Variational Gaussian Wavepacket Dynamics



G-MCTDH
Two-Layer/Multi-Layer G-MCTDH

Quantum-Classical Limit of G-MCTDH

Preamble: MCTDH, G-MCTDH & vMCG
Quantum-Semiclassical MCTDH
Density Matrices & GWP/Langevin Dynamics

Variational Dynamics

Ψ(r1, . . . ,rP, t) = ∑
j1

. . .∑
jP

Aj1...jP(t)
M

∏
κ=1

ϕ
(κ)
jκ (rκ , t)

P

∏
κ=M+1

g(κ)jκ (rκ , t)

g(κ)j (rκ , t) = exp
[
rκ ·a(κ)j (t)rκ + ξ

(κ)
j (t) · rκ + η

(κ)
j (t)

]
multidimensional Gaussian functions:
• “thawed” (TG) vs. “frozen” (FG)
• quasi-classical motion for ξj =−2ajqj + ipj
• analytical integrals

Dirac-Frenkel variational principle:

〈δΨ|H− i ∂

∂ t |Ψ〉= 0 dynamical equations for Λ
(κ)
j = (a(κ)j ,ξ

(κ)
j ,η

(κ)
j )

• up to 50-100 modes – exponential scaling problem ( ∼ fNf+1) is alleviated
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Dynamical Equations

Burghardt, Meyer, Cederbaum, JCP 111, 2927 (1999)

coefficients:

SPFs (primary modes):

GWPs (secondary modes):

iSȦ =
[
H− iτ

]
A

iϕ̇(κ) =

(
1̂− P̂(κ)

)[
ρ
(κ)
]−1

Ĥ(κ)
ϕ
(κ)

iC(κ)
Λ̇
(κ) = Y(κ)

S(κ)jl = 〈g(κ)j |g
(κ)
l 〉 ; τ

(κ)
jl = 〈g(κ)j |

∂g(κ)l
∂ t
〉

C(κ)
jα,lβ = ρ

(κ)
jl 〈

∂g(κ)j

∂λ
(κ)
jα

∣∣∣∣(1̂− P̂(κ))

∣∣∣∣ ∂g(κ)l

∂λ
(κ)
lβ

〉 ; Y(κ)
jα = ∑

l
〈

∂g(κ)j

∂λ
(κ)
jα

∣∣∣∣(1̂− P̂(κ))Ĥ(κ)
jl

∣∣∣∣g(κ)l 〉

• evolution under multiconfigurational mean-field Hamiltonian
• coupled, variational equations for Gaussian parameters
• correlations between primary vs. secondary subspace
• analogous equations for density matrix evolution Burghardt, Meyer, Cederbaum, JCP 111, 2927 (1999)
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Symplectic Structure of “VP Mechanics”

• variational formulation via action integral: δS = δ
∫

dtL = 0

classical mechanics

L = ∑
k

pkq̇k−H(qk,pk)

VP mechanics

L = ∑
α=1

S(0α)
λ̇α −〈Ψ|H|Ψ〉

q̇k =
∂H
∂pk

ṗk =−
∂H
∂qk

identify: p̃α = S(0α) = i〈Ψ| ∂Ψ

∂λα
〉

λ̇α =
∂ 〈H〉
∂ p̃α

= ∑
β

∂ 〈H〉
∂λβ

∂λβ

∂ p̃α

= ∑
β

∂ 〈H〉
∂λβ

(
C−1

)
αβ

Kramer, Saraceno, Geometry of the time-dependent variational principle, Springer (1981), Shalashilin, Burghardt, JCP 129, 084104 (2008)
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Classical Evolution as a Special Case

qj,pj gj(rκ) = Nj exp [(rκ −qj) ·aj(rκ −qj)+ ipj · (rκ −qj)]

where we used ξj =−2ajqj + ipj

We have classical motion of (qj(t),pj(t)) if

• single Gaussian (cf. Heller)

• superposition of TGs / single-surface + harmonic potential: “decoupling
effect” (Metiu & co, JCP (1985))

or

• if the classical limit is reached (λdB� L), such that G-MCTDH becomes a
true mixed quantum-classical method for ψε = ∑jl AjleiSl/ε ϕjgε

l , see below
Römer, Burghardt, Mol. Phys. 111, 3618 (2013)
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Implementation Details

• frozen Gaussians (FGs) almost
exclusively used due to numerical
robustness

• however, thawed Gaussians (TGs)
were successfully employed for
system-bath problems
[Burghardt, Nest, Worth (2003)]

• various conventions possible for
complex GWP phase ηj: here,
normalized GWPs, imaginary part of
phase set to zero

• local harmonic approximation (LHA)
or higher-order local expansion

• split off separable part of evolution:

iΛ̇(κ) = X(κ)
0 +(C(κ))−1Y(κ)

corr

• Constant Mean Field (CMF)
integrator used, by switching to an
orthogonalized representation to
match standard A coeff. propagation

• singularities of the S and C matrices
(linear dependencies): standard
regularization scheme

• Wigner sampling or single GWP as
initial condition

• dynamic GWP allocation (G. Worth)
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Example: System-Bath Correlations and Decoherence
Thawed Gaussians (TGs)

cat state + 60 HO-bath

←→

0 100 200 300 400t [fs]
-0.5

0

0.5

  z-z’ [a.u.]

0

0.1

coherence ρ(z,z′)

t=0
(A)

-0.5
0

0.5
z [a.u.]

-0.5
0

0.5
z’ [a.u.]

0

0.1

t=380 fs
(B)

-0.5
0

0.5
z [a.u.]

-0.5
0

0.5
z’ [a.u.]

0

0.1

Burghardt, Nest, Worth, JCP 19, 5364 (2003)
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G-MCTDH: Morse Oscillator + 60-Mode Harmonic Bath
Thawed Gaussians (TGs)

decoherence

0.001

0.01

0.1

1

0 200 400 600 800

co
he

re
nc

e 
no

rm

t [fs]

b a

energy relaxation

-0.0175

-0.017

-0.0165

-0.016

0 100 200 300 400

E
 [a

.u
.]

t [fs]

a

b

c

d

1/γ = 50 fs

1/γ = 500 fs

• typical configuration: ([5]core, [3,3,3,4,4,3,3,3]bath)

Burghardt, Nest, Worth, JCP 19, 5364 (2003)
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G-MCTDH Calculation for S2/S1 CoIn in pyrazine
Hybrid calculation for 4+20 modes (FGs)

absorption spectrum

 0

 1.5 2 2.5 3

In
te

ns
ity

E [eV]

S2(π-π∗)

S1(n-π∗)

dotted red line: experiment
Yamazaki et al., Faraday Discuss. 75, 395 (1983)

full black line: G-MCTDH
Burghardt, Giri, Worth, JCP 129, 174104 (2008)

FT

autocorrelation function

|〈ψ
(t

0)
|ψ

(t
)〉
|

 0

 0.5

 1

 0  100  200
time [fs]

x10

24 modes

state 1: ([19,10]core, [18,10,18,10]bath)

state 2: ([12,7]core, [10,8,12,10]bath)

150 fs / 1644 MB / 1250 hrs / 6962400 config’s
MCTDH: 150 fs / 2614 MB / 279 hrs / 10966760 cf’s
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MCTDH & G-MCTDH for Density Operators

• multiconfigurational density operators of two types:

• density operators of type I:

ρ(x1, . . . ,xN ;x′1, . . . ,x
′
N) = ∑

τ1

. . .∑
τN

Bτ1...τN (t)
N

∏
κ=1

σ
(κ)
τκ

(xκ ,x′κ , t)

• density operators of type II:

ρ(x1, . . . ,xN ;x′1, . . . ,x
′
N) = ∑

j1

. . .∑
jN

∑
l1

. . .∑
lN

Bj1,...,jN ;l1,...,lN (t)

×
N

∏
κ=1

ϕ
(κ)
jκ (xκ , t)ϕ

(κ)∗
lκ (x′κ , t)

Raab, Burghardt, Meyer, J. Chem. Phys. 111, 8759 (1999), Raab, Meyer, J. Chem. Phys. 112, 10718 (2000)

• EOMs from variational principle for densities: 〈〈δρ|L− i∂t|ρ〉〉= 0

• employ, e.g., in conjunction with Markovian MEs (Lindblad, Caldeira-Leggett)
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G-MCTDH for Density Operators

Burghardt, Meyer, Cederbaum, J. Chem. Phys. 111, 2927 (1999)

• density operators of type I:

ρ(r;r′) = ∑
τ1

. . .∑
τN

Bτ1...τN (t)
N

∏
κ=1

G
(κ)
τκ

(rκ ,r′κ , t)

G
(κ)
τ (r,r′, t) = exp

(
r ·ατ(t) · r+ r′ ·α ′τ(t) · r′+β τ(t) · r+β

′
τ(t) · r′+r ·ν ′τ(t) · r′+θ(t)

)
• includes thermal GWPs, e.g., as initial condition:

G
(κ)
τ (r,r′, t = 0) = exp

(
− mω

2sinh(ω/kT)

[
(r2 + r′2)cosh(ω/kT)−2rr′

])
• density operators of type II: adjoint pairs of component densities

G
(κ)
jl (r,r′, t) = g(κ)j (r)g(κ)∗l (r′) = G

(κ)∗
lj (r,r′, t)
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Stochastic Schrödinger Equation in GWP/Mean-Field Setting

Burghardt, Meyer, Cederbaum, J. Chem. Phys. 111, 2927 (1999), see also: Peskin, Steinberg, J. Chem. Phys. 109, 704 (1999)

For example, consider a vMCG wavefunction + Hartree bath:

ψ(r1, . . . ,rN ,{qn}, t) =
[
∑

j
Aj(t)gj(r1, . . . ,rN ,Λ(t))

]
∞

∏
n=1

χ
(n)(qn, t)

Take a bath acting upon the kth DOF of the GWP particle: ĤSB =−∑n cknr̂kq̂n,
resulting in the mean-field Hamiltonian

〈H〉jl(t) = −ρjl(t) r̂k ∑
n

ckn〈χ(n)(t)|q̂n|χ(n)(t)〉=−ρjl(t) r̂k ∑
n

cknQn(t)

Now use: limn→∞(∑n cnQn(t)) = f (t)−
∫ t

0 dt′ ζ (t− t′)Q̇k(t′)+ζ (0)Qk(t)
In the simplest case, we obtain a Langevin type equation for the GWPs:

q̇j,k =
pj,k

m

ṗj,k = −
∂Vsys

∂ rk

∣∣∣∣
rk=qk

+ f (t)− γQ̇k(t)+ζ (0)Q̇k(0)
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GWP/Langevin Dynamics: 2D Tunneling
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• vMCG calculations with 20 two-dimensional GWPs (not entirely converged)
• Langevin dissipation acting on harmonic coordinate
• increasing friction destroys resonant dynamics between the two modes
• general scheme: Langevin closure of effective-mode chains
• cheap and physically intuitive way of implementing dissipation
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GWP/Langevin Dynamics: 2D Tunneling

tunnel coordinate J(ω) = ∑n
c2

n
ωn

δ (ω−ωn) =
2γωD2

(Ω2−ω2)2+4γ2ω2

tunnel coordinate effective mode X̂1 Jresidual(ω) = 2γω

• ĤSB + ĤB = ŝ ∑i cnx̂n + ĤB DŝX̂1 – residual bath
• “Brownian oscillator” picture: 1 effective mode + Ohmic bath
• here, effective mode is chosen resonant with the tunneling frequency
• treat residual Ohmic bath by Langevin dynamics
• 2D system with damping of effective Brownian oscillator mode
• replaces discretized residual bath (or full discretization of SD)
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G-MCTDH: System-Bath Models

• discretized bath spectral densities (SDs) represented by “GWP bath”

• hierarchical chain representations of SDs that are (partially) represented by
GWPs including Langevin closure

ĤSB + ĤB = ŝ ∑i cnx̂n + ĤB DŝX̂1 + D12X̂1X̂2 + . . . + X̂M–residual bath
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Approximate SD’s: Mth Order Truncation

J(ω) =
π

2 ∑
n

c2
n

ωn
δ (ω−ωn) J(M)(ω) = lim

ε→0+
Im K(M)

B (ω− iε)

Hughes, Christ, Burghardt, JCP 131, 124108 (2009), Garg, Onuchic, Ambegaokar, JCP 83, 4491 (1985), Leggett, Phys. Rev. B 30, 1208 (1984)

K(M)
B (z) =−

D2
0,1

Ω2
1− z2−

D2
1,2

Ω2
2− z2−·· ·

D2
M−2,M−1

Ω2
M−1− z2−

D2
M−1,M

Ω2
M− z2− z2IM(z)

Ohmic closure: Rubin (quasi-Ohmic) closure:

IM
ohm(z) =−i

γ

z
IM
Rubin(z) =

1
2z

ΛR
2−2z2 +2iz

√
ΛR

2− z2

z+ i
√

ΛR
2− z2

Hughes, Christ, Burghardt, J. Chem. Phys. 131, 024109 (2009), Martinazzo, Vacchini, Hughes, Burghardt, J. Chem. Phys. 134, 011101 (2011)
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Topics

1 G-MCTDH
Preamble: MCTDH, G-MCTDH & vMCG
Quantum-Semiclassical MCTDH
Density Matrices & GWP/Langevin Dynamics

2 Two-Layer/Multi-Layer G-MCTDH
Two-Layer Extension – Concept
Equations of Motion
Applications: Energy Transport in a Molecular Chain, Spin-Boson System

3 Quantum-Classical Limit of G-MCTDH
Semiclassically Scaled G-MCTDH
Quantum-Classical Dynamics
Variational Multiconfigurational Ehrenfest Dynamics
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Two-Layer Extension – Concept
Equations of Motion
Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Two-Layer G-MCTDH – Motivation

• original G-MCTDH concept: combined, correlated TG modes (correlations
through off-diagonal elements of the width matrix)

• in practice: G-MCTDH or vMCG using combined FG modes

– factorizable, uncorrelated FG configurations
– despite the separability, the C matrix is not block-diagonal
– hence, expensive inversion step ∝ (ñd)3

• alternative concept: replace high-dimensional FG’s by superpositions of FG
configurations two-layer approach
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To Put Things in Perspective: Benchmarks for 2-State Model
(Donor-Acceptor Charge Transfer System)

Ĥ = Ĥ0 + ĤR + ĤB

Ĥ0: electronic part
ĤR: inter-fragment coordinate part
ĤB: phonon bath part

Ĥ0 = ∆XT−CT|CT〉〈CT|+ γ
(
|XT〉〈CT|+ |CT〉〈XT|

)
ĤR =

ωR

2
(R̂2 + P̂2)+κRR̂ |CT〉〈CT|

+γRR̂
(
|XT〉〈CT|+ |CT〉〈XT|

)
ĤB =

N

∑
i=1

ωi

2
(x̂2

i + p̂2
i )+

N

∑
i=1

κixi |CT〉〈CT|+
N

∑
i=1

κ2
i

2ωi

Tamura, Martinazzo, Ruckenbauer, Burghardt, J. Chem. Phys., 137, 22A540 (2012)
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Ultrafast Coherent Transfer Dynamics (MCTDH/60 Modes)
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• imaginary part (−2γ/h̄)ImρXT,CT population flux
• real part stationary coherent superposition (PXT ∼ 0.1, PCT ∼ 0.9)
• experiment: ultrafast ET (∼ 50 fs), oscillatory features [Brabec et al., CPL (2001)])

confirmed by recent pump-probe experiments by Lienau group [Science (2014)])
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Benchmarks – 41D Spin-Boson System
Frozen Gaussians (FGs)

• different mode
combinations
and #’s of
GWP config’s

• C inversion
in smaller
subspaces

• all G-MCTDH
calculations
have reasonable
timings

• memory
requirements
favorable

calc. type mode combination # configs memory CPU time C inversion
[mb] [hh:mm] avg/tot time

1 MCTDH [6,8],[6,8],[3,5],[2,3] 143616 754 1:36 -
[2,2],[2,2],[2,2],[2,2],[6,8] -

2 G-MCTDH [6,8],[6,8],[3,5],[2,3] 143616 28 0:12 0.21 ms
hybrid [2,2],[2,2],[2,2],[2,2],[6,8] 0:01:48

3 G-MCTDH [8,10],[8,10],[5,7],[4,5] 2890080 521 3:56 7.65 ms
hybrid [3,3],[3,3],[3,3],[3,3],[6,8] 0:12:03

4 G-MCTDH [6,8],[6,8],[3,5],[2,3] 143616 28 0:26 0.19 ms
all-GWP [2,2],[2,2],[2,2],[2,2],[6,8] 0:06:13
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Benchmarks – 41D Spin-Boson System
Frozen Gaussians (FGs)

• 2 el. states,
1 subsystem
mode, 40 bath
modes

• qualitative
agreement even
of “cheap”
calculations

• memory
requirements
favorable

• vMCG very
expensive even
for few config’s

calc. type mode combination # configs memory CPU time C inversion
[mb] [hh:mm] avg/tot time

1 MCTDH [6,8],[6,8],[3,5],[2,3] 143616 754 1:36 -
[2,2],[2,2],[2,2],[2,2],[6,8] -

2 vMCG [2,2] 4 2 0:47 5.10 ms
2,2 0:03:60

3 vMCG [6,6] 12 15 7:10 136.38 ms
6,6 1:29:18

4 vMCG [12,12] 24 55 47:56 1758.71 ms
12,12 23:21:38

 0.5
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n
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Two-Layer (2L)-G-MCTDH Scheme

Römer, Ruckenbauer, Burghardt, J. Chem. Phys. 138, 064106 (2013)

Ψ(r, t) = ∑
J

AJ(t)ΦJ(r, t) = ∑
J

AJ(t)
M

∏
κ=1

ϕ
(κ)
jκ (rκ , t)

where the single-particle functions (SPFs) ϕ
(κ)
jκ are now built as superpositions of

Frozen Gaussian (FG) configurations,

ϕ
(κ)
jκ (rκ , t) = ∑

L
B(κ)

j,L (t)G(κ)
L (rκ , t)

= ∑
L

B(κ)
j,L (t)∏

µ

g(κ,µ)lµ (rκµ
, t)

• hierarchical Tucker format

• intra-SPF correlations are carried by B coefficients

• GWP parameter dynamics in small (κ,µ) subspaces

• first-layer SPFs can be chosen to be orthogonal: 〈ϕ(κ)
j (t)|ϕ(κ)

j′ (t)〉= δjj′
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Two-Layer G-MCTDH – Equations of Motion

1st layer coefficients:

2nd layer coefficients:

GWPs (2nd layer):

iȦ = HA

iS(κ)Ḃ(κ) =
[
H̃(κ)− iτ̃(κ)

]
B(κ)

iC(κ,µ)
Λ̇
(κ,µ) = Y(κ,µ)

where S̃(κ)jL,j′L′ = δjj′〈G
(κ)
L |G

(κ)
L′ 〉 , τ̃

(κ)
jL,j′L′ = δjj′〈G

(κ)
L |∂tG

(κ)
L′ 〉

and the 1st layer mean field term: H̃(κ)
jL,j′L′ = 〈G

(κ)
L |(1− P̂(κ))

[
(ρ(κ))−1Ĥ(κ)

]
jj′

G(κ)
L′ 〉

and for the parameter equations: C(κ,µ)
jα,lβ = ρ

(κ,µ)
jl 〈∂α g(κ,µ)j |(1̂− P̂(κ,µ)) |∂β g(κ,µ)l 〉

as well as Y(κ,µ)
jα = ∑l〈∂α g(κ,µ)j |(1̂− P̂(κ,µ))Ĥ(κ,µ)

jl |g(κ,µ)l 〉

Römer, Ruckenbauer, Burghardt, J. Chem. Phys. 138, 064106 (2013)
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Two-Layer G-MCTDH – Scaling
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vMCG
2L−G−MCTDH

effortG-MCTDH ∼ mf 2nf+1 + f (d̃n)3

calculation of mean fields + C matrix inversion

effort2L-G-MCTDH ∼ m1f 2
1 nf1+1

1 +m1m2f1f2n1nf2+1
2 (f2 +n1)+ f1f2(d2n2)

3

calculation of 1st and 2nd-layer mean fields + C matrix inversion
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2L-G-MCTDH for Coupled Electronic States: Three Variants

— single-set: shared basis

ΨS(r, t) = ∑
J,s

AJs(t)ΦJ(r, t)|s〉 = ∑
J,s

AJs(t)
N

∏
κ=1

ϕ
(κ)
jκ (rκ , t)|s〉

ϕ
(κ)
jκ (rκ , t) = ∑

L
B(κ)

j,L (t)G(κ)
L (rκ , t) = ∑

L
B(κ)

j,L (t)∏
µ

g(κ,µ)lµ
(rκµ

, t)

— multi-set: state-specific basis

ΨM(r, t) = ∑
J,s

A(s)
J (t)Φ(s)

J (r, t)|s〉 = ∑
J,s

A(s)
J (t)

N

∏
κ=1

ϕ
(κ,s)
jκ (rκ , t)|s〉

ϕ
(κ,s)
jκ (rκ , t) = ∑

L
B(κ,s)

j,L (t)G(κ,s)
L (rκ , t) = ∑

L
B(κ,s)

j,L (t)∏
µ

g(κ,µ,s)lµ
(rκµ

, t)

— hybrid-multi/single set ≡ hybrid-set: state-specific but shared 2nd-layer basis

ΨH(r, t) = ∑
J,s

A(s)
J (t)Φ(s)

J (r, t)|s〉 = ∑
J,s

A(s)
J (t)

N

∏
κ=1

ϕ
(κ,s)
jκ (rκ , t)|s〉

ϕ
(κ,s)
jκ (rκ , t) = ∑

L
B(κ,s)

j,L (t)G(κ)
L (rκ , t) = ∑

L
B(κ,s)

j,L (t)∏
µ

g(κ,µ)lµ
(rκµ

, t)
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Model System: Intramolecular Vibrational Redistribution (IVR)

Ĥ = T̂ +
1
2

n

∑
i=1

m

∑
j=1

ωiq̂
2
i, j +

1
2

n−1

∑
i=1

k
(
q̂i,1− q̂i+1,1

)2
+∆

n

∑
i=1

m

∑
j=2

q̂2
i,1q̂i,j

Schade, Hamm, J. Chem. Phys. 131, 044511 (2009), Eisenbrandt, Ruckenbauer, Römer, Burghardt, in preparation (2017)

• low-frequency transporting modes + high-frequency local modes
• transporting/local modes communicate via Fermi resonances
• IVR efficiency is controlled by parameters k and ∆

• consider regime of “ballistic” transport along the chain
• i = 1, . . . f1 1st-layer modes , j = 1, . . . f2 2nd-layer modes/site
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Model System: PES Cuts

Ĥ = T̂ +
1
2

n

∑
i=1

m

∑
j=1

ωiq̂
2
i, j +

1
2

n−1

∑
i=1

k
(
q̂i,1− q̂i+1,1

)2
+∆

n

∑
i=1

m

∑
j=2

q̂2
i,1q̂i,j
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Results & Benchmarks

18 sites
90 DOFs
1st/2nd layer modes:

f1 = 6, f2 = 6
1st/2nd layer SPFs:

n1 = 3, n2 = 3

[140 hrs/36 MB]
in-house code

(vs. [136 hrs/215 MB]
2L-MCTDH
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Results & Benchmarks: Spin-Boson System

calc type # L1 modes # L1 SPFs # L2 modes # L2 SPFs timing [s]
small 6 [4,4,4,4,4,7] [4,4,4,4,4,1] [3,3,3,3,3,7] [8252]
medium 6 [6,6,5,5,5,7] [4,4,4,4,4,1] [5,5,5,5,5,8] [122636]
large 6 [7,7,8,8,7,8] [4,4,4,4,4,1] [5,6,6,7,6,9] [286980]

Eisenbrandt, Ruckenbauer, Römer, Burghardt, in preparation (2017)

• single-set calculations for rediscretized SDs for 40 / 100 modes
• convergence properties are similar for single(S)/hybrid(H)/multi(M)-set
• on-the-fly implementation planned
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Implementation & Scaling

• in-house code (M. Ruckenbauer,
P. Eisenbrandt)

• general polynomial potentials
• Hamiltonian given as sum-over-products
• initial condition: shell-like spatial

distribution (here, initially unoccupied
GWPs narrower than central GWP)

• conventional regularization of S and C
matrices

• ABM integrator (time step typically
∼10−2 fs)

• scaling in good agreement with theory

• NB: joint standard G-MCTDH/vMCG
code with G. A. Worth now available
within QUANTICS package at
http://ccpforge.cse.rl.ac.uk/.
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Multi-Layer Form

Ψ(t) = ∑
J

A[1]
J (t)Φ[1]

J (t) := ∑
J

A[1]
J (t)

f [1]

∏
κ1=1

χ
[1](κ1)
jκ1

(t)

with the spf’s of the first M−1 layers ( m ∈ {2,3, . . . ,M}),

χ
[m−1](µm−1)
j (t) = ∑

J
A[m](µm−1)

j,J (t)Φ[m](µm−1)
J (t) = ∑

J
A[m](µm−1)

j,J (t)
f [m]
µm−1

∏
κm=1

χ
[m]
jκm

(t)

and the final (Mth) layer composed of FG’s,

χ
[M](µM)
j (t) = g(µM)

j (Λ
(µM)
j (t))

can be straightforwardly combined with existing ML-MCTDH approaches

Römer, Ruckenbauer, Burghardt, J. Chem. Phys. 138, 064106 (2013)
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ML-MCTDH: Example
Binder, Polkehn, Ma, Burghardt, Chem. Phys. 482, 16 (2017)

left (L) θ right (R)

R
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Topics

1 G-MCTDH
Preamble: MCTDH, G-MCTDH & vMCG
Quantum-Semiclassical MCTDH
Density Matrices & GWP/Langevin Dynamics

2 Two-Layer/Multi-Layer G-MCTDH
Two-Layer Extension – Concept
Equations of Motion
Applications: Energy Transport in a Molecular Chain, Spin-Boson System

3 Quantum-Classical Limit of G-MCTDH
Semiclassically Scaled G-MCTDH
Quantum-Classical Dynamics
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Quantum-Classical Limit of G-MCTDH

ε

ε

modes

}{ϕ(κ)

primary

(κ)

classical secondary

modes

}{g

classical dissipative

modes

{g(κ)}

take GWP subspace to classical limit:

Ψ
qc(r, t) = ∑

J
AJ(t) Φ

qc
J (r, t)

Φ
qc
J (r, t) =

M

∏
κ=1

ϕ
(κ)
jκ (rκ , t)︸ ︷︷ ︸

primary nodes

P

∏
κ=M+1

g(κ)
ε,jκ (rκ , t)︸ ︷︷ ︸

secondary modes

Römer, Burghardt, Mol. Phys. 111, 3618 (2013)

use “narrow” semiclassical GWPs:

g(κ)
ε,jκ (rκ) =Nε exp

[
− 1

2ε
(rκ −qjκ ) ·a(rκ −qjκ )

+
i
ε

p(κ)jκ (t) · (rκ −qjκ )

]
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Classical Limit as Scaling Limit

• condition for classicality:

λdB� L

λdB = de Broglie wave length; L = scale of variation of the potential V
• rescale potential: Vε(r) := V(εr) such that ε → 0 corresponds to the limit of

slow variation of Vε

• switch to macroscopic coordinates: (r̃, t̃) = (εr,εt) such that the Schrödinger
Equation reads (h̄ = 1, m = 1):

iε
∂

∂ t̃
Ψ(r̃, t̃) =

[
−ε2

2
∆r̃ +V(r̃)

]
Ψ(r̃, t̃)

V 1(r) = V (r)

r

V ε(r) = V (ǫr)

r
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Classical-Limit Gaussian Wavepackets

gε,j(r̃) = Nε exp
[
− 1

2ε
(r̃−qj) ·a(r̃−qj)+

i
ε

pj · (r̃−qj)

]
• “narrow” wavepackets centered around position and momentum (qj,pj),

‖(r̂−qj)gε,j‖ ∼
√

ε ‖(p̂−pj)gε,j‖ ∼
√

ε

• move along classical trajectories (up to an error of order
√

ε)

gε,j(r̃, t̃)∼ exp
(

i
ε

Scl(t̃)
)

gε,j(r̃,qcl
j (t̃),p

cl
j (t̃))

• in this limit, the Gaussian wavepackets are decoupled from each other

G. Hagedorn, Ann. Inst. H. Poincaré Phys. Théor. 42 (1985), no. 4, 363, G. Hagedorn, Ann. Physics 269 (1998), 77
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Mixed Quantum-Classically Evolved Wavefunction

Ψ
qc(r, t) = ∑

j1

. . .∑
jM

∑
l

Aqc
j1...jM ,l

( M

∏
κ=1

ϕ
(κ)
jκ (rκ , t)

)
exp
(

i
ε

Scl
l

)
g(f )

ε,l (rf ;q(f )l ,p(f )l )

coefficients:

SPFs (primary modes):

classical secondary modes:

iȦl = H Al

iϕ̇(κ) =

(
1̂− P̂(κ)

)[
ρ
(κ)
]−1

Ĥ(κ)
ϕ
(κ)

q̇(f )l = p(f )l ṗ(f )l =−∇ql H
(f )
l

• the resulting quantum-classical dynamics corresponds to a
multiconfigurational Ehrenfest (MCE) approach

• the trajectories are still coupled through the primary-mode mean fields

Römer, Burghardt, Mol. Phys. 111, 3618 (2013)
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MCE Nonadiabatic Dynamics (Diabatic Representation)

Ĥ =−ε2

2
∇

2
r 1̂+ V̂ V̂(r) =

(
V11(r) V12(r)
V12(r) V22(r)

)

|Ψqc(r, t)〉=
nstates

∑
n=1

nG

∑
l=1

Anl(t)exp
(

i
ε

Scl
l (t)

)
gε,l(r;ql(t),pl(t)) |n〉 (“single-set”)

coefficients:

classical modes:

iȦl = H(ql)Al

q̇l = pl ṗl =−∇ql V̄l(ql)

with the mean-field potential V̄l =

[
∑
n
|Anl|2

]−1

∑
n

∑
n′

A∗nlAn′l〈n|V̂(r = ql)|n′〉

• Ψqc evolves along a superposition of Ehrenfest trajectories

• similarly for adiabatic representation (kinetic energy couplings)

see also Shalashilin, J. Chem. Phys. 130, 244101 (2009), 132, 244111 (2010)
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Ehrenfest & Beyond

|a |
2

2

|a |
2

1

E2

E1

Eeff

classically 
forbidden

e
n

e
rg

y
p

o
p

u
la

ti
o

n

R

0

1

N. L. Doltsinis, in: Quantum Simulations of Complex
Many-Body Systems: From Theory to Algorithms
NIC Series, Jülich, 10, p. 377 (2002)

• single Ehrenfest trajectory: mean field
V̄(q) = ∑n,n′ AnAn′〈n|V̂(q)|n′〉
Delos, Thorson, Knudson, Phys. Rev. A 6, 709 (1972)
Billing, Chem. Phys. Lett. 100, 535 (1983)

• multiconfigurational Ehrenfest: coherent
superposition of trajectories (ql,pl) with mean
fields
V̄l(ql) = [∑n |Anl|2]−1

∑n,n′ A∗nlAn′l〈n|V̂(ql)|n′〉
Shalashilin, J. Chem. Phys. 130, 244101 (2009), 132, 244111 (2010)
Römer, Burghardt, Mol. Phys. 111, 3618 (2013)

• different from statistical Ehrenfest approach
Alonso et al., J. Chem. Phys. 137, 054106 (2012)
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MCE-like Dynamics for Non-Scaled GWPs

• important in practice, in view of GWP-based sampling of initial conditions
and guaranteeing norm conservation

• two-layer ansatz required to restrict electronic coupling to lth subspace:

|Ψqc(r, t)〉=
nG

∑
l=1

Ãl(t)|Φqc
l (r, t)〉 =

nG

∑
l=1

Ãl(t)exp
(

i
h̄

Scl
l (t)

)
gl(r;ql(t),pl(t)) |χ

(el)
l (t)〉

|χ(el)
l (t)〉 =

nstates

∑
n=1

Bnl(t)|n〉

Ã coefficients:

B coefficients:

classical modes:

iS ˙̃A = (H− iτ) Ã
iḂl = H(ql)Bl

q̇l = pl ṗl =−∇ql V̄l(ql)

with the mean-field potential V̄l =

[
∑
n
|Bnl|2

]−1

∑
n

∑
n′

B∗nlBn′l〈n|V̂(r = ql)|n′〉

see also Shalashilin, J. Chem. Phys. 132, 244111 (2010)
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Multiconfigurational Ehrenfest Dynamics

• 4D – 40D spin-boson system
• several 1000 trajectories
• importance sampling over ρWigner
• strong dependence on GWP width

• Multiconfiguration Ehrenfest
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• For Comparison: Statistical Ehrenfest
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Multiconfigurational Ehrenfest System – Properties

• the quantum-classical wavefunction state carries correlations due to the
multiconfigurational wavefunction form,

Ψ
qc(r, t) = ∑

J
∑

l
Aqc

J,l(t)ΦJ(rκ , t)exp
(

i
ε

Scl
l

)
g(f )

ε,l (rf ;q(f )l ,p(f )l )

• the reduced density matrix of the quantum subsystem is in a mixed state,1

ρ
sys
qc (x,x

′, t) = Trcl

[
Ψ

ε
qc(x,r, t)Ψ

ε∗
qc(x

′,r′, t)
]

• statistical ensembles can be constructed as follows:

ρ
ε
qc(x,r,x

′,r′, t) = ∑
n

pnΨ
ε
qc,n(x,r, t)Ψ

ε∗
qc,n(x

′,r′, t)

1By contrast, single-trajectory Ehrenfest evolution always yields a pure subsystem state.
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Is Multiconfigurational Ehrenfest Dynamics Consistent?

• the properties of the underlying wavefunction state Ψqc are preserved

• correlations between the quantum and classical subspaces are accounted for

• the dynamics is variational, hence a generalized Poisson bracket structure
exists: i{·, · }qc = i∑n{〈H〉,An }+ i∑l{〈H〉,ξl } where 〈H〉= 〈Ψqc|Ĥ|Ψqc〉

However,

• the single-configurational (standard Ehrenfest) case is not a satisfactory
quantum-classical description

• due to the non-linear structure of the equations, a direct comparison with
other approaches (e.g., the QC Liouville Equation) is not straightforward
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Where We’re Heading: Exciton Dynamics

C-C inter-monomer mode + local C=C + torsion + bath C-C inter-monomer + local C=C + fixed torsion

• ML-MCTDH: 20 Frenkel sites, up to 60 modes; w & w/o torsional relaxation
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Temperature Effects: Ehrenfest/Langevin dynamics

10 K

100 K

10 K

100 K

• ultrafast transients not correctly reproduced by Ehrenfest dynamics
• at increasing temperatures, fluctuations start driving exciton migration
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Summary

• G-MCTDH/ML-G-MCTDH/vMCG are useful due to their proximity to
classical mechanics, while permitting full quantum convergence

• drawback: non-orthogonal functions – but various assets: analytical form of
matrix elements, modest memory requirements, localized functions

• pure-GWP (vMCG) variant for on-the-fly applications (G. A. Worth):
matching algorithm for 2L-vMCG phase-space points, PES database, . . .

• two-layer (or multi-layer) variant employs correlated FG-based particles;
need for sampling strategies when combining with on-the-fly applications

• natural quantum-classical limit of G-MCTDH: multiconfiguration Ehrenfest

• Langevin dynamics from a stochastic Schrödinger equation picture

• next steps: statistical sampling & extension to thermal GWPs; random-phase
thermal wavepackets; GWP-based correlation functions (cf. Coughtrie &
Tew, JCP 140, 194106 (2014)); GWP calculations for nonlinear optical
signals, transport dynamics, multiscale microscopic/mesoscopic dynamics . . .
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