Ultrafast Vibronic Dynamics of Functional Organic Polymer Materials: Coherence, Confinement, and Disorder

I. Burghardt

Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Germany

PPES 2018 Photoinduced Processes in Embedded Systems Pisa, 24-27 June 2018

Acknowledgments & Collaborations

Group Frankfurt:

- M. Polkehn
- P. Eisenbrandt
- R. Binder
- J. von Cosel
- K. Falahati
- D. Picconi
- W. Popp
- M. Bonfanti
- K. Schwinn

Former members:

- J. Wahl
- M. Huix-Rotllant

Collaborations:

- H. Tamura (Tokyo, Japan)
- W. H. Miller, S. Cotton, R. Liang (Berkeley)
- K. H. Hughes (Bangor, UK)
- R. Martinazzo (Milano, Italy)
- H. Lischka, A. Aquino (TTU, USA)
- F. Plasser (Vienna, Austria)
- D. Lauvergnat (Orsay, France)
- S. Haacke, S. Méry (Strasbourg, France)
- G. d'Avino (Institut Néel, Grenoble)
- G. A. Worth (London, UK)
- A. Panda (IIT Guwahati, India)
- D. Beljonne, Y. Olivier (Mons, Belgium)

Thanks to: DFG / ANR (France) for financial support

Topics

Photoinduced Energy & Charge Transfer in Functional Organic Materials Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

Topics

Photoinduced Energy & Charge Transfer in Functional Organic Materials Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

2 Case Studies I: Exciton Migration Guided by Conformational Dynamics Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Topics

Photoinduced Energy & Charge Transfer in Functional Organic Materials Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

2 Case Studies I: Exciton Migration Guided by Conformational Dynamics Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Ocase Studies II: Charge Transfer Excitons & Charge Separation Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Case Studies I: Exciton Migration Guided by Conformational Dynamics Case Studies II: Charge Transfer Excitons & Charge Separation Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

Vim et al., Nature Materials, 5, 197 (2006)

Role of Electron-Phonon Coupling in Organic Photovoltaics

elementary steps:

- creation of electron-hole pairs (excitons)
- exciton migration to donor-acceptor interface area
- exciton dissociation at donor-acceptor junctions (here, PCBM-P3HT)¹
- capture of charge carriers at electrodes
- potentially competing process: electron-hole recombination

 $^{1}\text{PCBM} = \text{phenyl-C}_{61}\text{-butyric}$ acid methyl ester, P3HT = poly(3-hexylthiophene)

What is the Best Nano-Morphology?

Highly ordered nanostructured domains (typically sub-10 nm) are thought to

- facilitate exciton diffusion
- favor exciton dissociation
- facilitate free carrier transport

Nanostructured domains can be achieved by

- self-assembly properties of D/A oligomers
- thin film processing methods (e.g., nanoimprint lithography)

However, the role of nanoscale ordering is controversial:

Guo et al., JACS 136, 10024 (2014)

• e.g., in a recent study of DA copolymer:fullerene systems, it is shown that the charge separation energetics changes unfavorably upon formation of crystalline domains

Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

Which Methods, Even for a Minimal Model?

- tens to hundreds of electronic states
- aggregate-type systems
- charge transfer and excitonic couplings^(*) required
- delocalized excitations
- strong electron-phonon coupling
- non-Markovian dynamics
- non-exponential transfer
- coherent wavepacket dynamics
- standard rate theories (Förster / Marcus) not necessarily valid

http://phys.org/news/2014-02-result-cheaper-efficient-solar-cells.html

^(*)excitonic coupling = transition density interaction:

 $V_{DA} = \frac{1}{4\pi\varepsilon_0} \int d\mathbf{r}_D \, d\mathbf{r}_A \frac{\rho_D^{(eg)}(\mathbf{r}_D) \, \rho_A^{(ge)}(\mathbf{r}_A)}{|\mathbf{r}_D - \mathbf{r}_A|} \longrightarrow \text{ limiting case: transition dipole interaction}$

Case Studies I: Exciton Migration Guided by Conformational Dynamics Case Studies II: Charge Transfer Excitons & Charge Separation Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

Two Types of Approaches

approximate electron-nuclear dynamics: e.g., time-dep. Kohn-Sham equation

$$i\frac{\partial}{\partial t}\varphi_i(r,t) = (-\frac{\nabla^2}{2} + v_{\rm KS}(r,t))\varphi_i(r,t)$$

expand in adiabatic KS basis, $\varphi_i(r,t) = \sum_k c_{ik}(t) \tilde{\varphi}_k(r;R)$ such that

$$i\frac{dc_{ik}}{dt} = \sum_{l} c_{il}(t)(\varepsilon_{l}\delta_{kl} + d_{kl}\cdot\dot{R})$$

Ehrenfest or Surface Hopping dynamics e.g., Craig, Duncan, Prezhdo, PRL 95, 163001 (2005)

pro's: no pre-computed potentials con's: possibly poor description of excited states and nuclear dynamics parametrized model Hamiltonian + multi-state quantum nuclear dynamics

$$i\frac{\partial}{\partial t}\psi(R,t)=\hat{H}\psi(R,t)$$

with a multi-state/site Hamiltonian

$$\hat{H} = \sum_{mn} (\hat{h}^e_{mn} + \hat{h}^{e-ph}_{mn}(R)) |m\rangle \langle n| + \hat{H}^{ph}_0(R)$$

and
$$|\psi(R,t)
angle = \sum_n c_n(t) \Phi_n(R,t) |n
angle$$

use (approximate) quantum dynamics e.g., Kondov et al., JPCC 111 (2007), Tamura et al., JACS 135 (2013)

pro's: immediate physical interpretation con's: restricted number of coordinates, electronic couplings *via* diabatization

Road Map: Model Hamiltonians & Quantum Dynamics

e-h lattice models + non-perturbative e-ph interaction + quantum dynamics

- electron-hole (*e-h*) lattice models including vibronic interactions
- ab initio (typically CC2, ADC(2)) and/or TD-DFT parametrization
- diabatization procedures to generate electronic couplings
- compute spectral densities and effective-mode decomposition
- efficient high-dimensional nonadiabatic quantum dynamics using multi-configurational methods (MCTDH) or reduced dynamics (HEOM)
 + semiclassical/quantum-classical approaches (SQC/MM, Ehrenfest)
- "molecular aggregate" perspective: parametrization for small fragments & dynamics for larger systems Polkehn, Eisenbrandt, Tamura, Burghardt, Int. J. Quant. Chem. 118:e25502 (2018)

CC2 = Second-Order Approximate Coupled-Cluster

ADC(2) = Second-Order Algebraic-Diagrammatic Construction (ADC(2)) scheme

MCTDH = Multi-Configuration Time-Dependent Hartree Beck et al., Phys. Rep. 324, 1 (2000)

HEOM = Hierarchy of Equations of Motion Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006)

Case Studies I: Exciton Migration Guided by Conformational Dynamics Case Studies II: Charge Transfer Excitons & Charge Separation Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

Electron-Hole Lattice Model

 $\begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \end{bmatrix} = \begin{bmatrix} \bullet & \bullet \\ \bullet \\ \bullet \\ \bullet \\ \end{bmatrix}$

- electron-hole (e-h) configurations: $|\mathbf{n}\rangle = |n_e n'_h\rangle = |n_e\rangle_C \otimes |n'_h\rangle_V$
- Hamiltonian in this basis:

$$\hat{H} = \sum_{\mathbf{mn}} (\hat{h}_{\mathbf{mn}}^{eh} + \hat{h}_{\mathbf{mn}}^{eh-ph}(\mathbf{x})) |\mathbf{m}\rangle \langle \mathbf{n}| + \hat{H}_{0}^{ph}(\mathbf{x})$$

Merrifield, J. Chem. Phys. 34, 1835 (1961) Wang and Mukamel, Chem. Phys. Lett. 192, 417 (1992) Karabunarliev and Bittner, J. Chem. Phys. 118, 4291 (2003) Binder, Wahl, Römer, Burghardt, Faraday Discuss, 163, 205 (2013)

- includes Frenkel-type exciton (XT) states and charge transfer (CT) states
- oligomer (fragment) *ab initio* or TDDFT calc's: on-site energies, diabatic couplings
- vibronic couplings from Franck-Condon gradients, geometry optimization, PES cuts

Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

Special Case: Frenkel Exciton Model

- Frenkel model $(n_e = n'_h = n)$ often a good approximation to describe exciton
- exact analytic mapping of oligomer PES's to Frenkel model

Binder, Römer, Wahl, Burghardt, J. Chem. Phys. 141, 014101 (2014)

stacked oligothiophene (OT4)₂: "HJ aggregate"

• delocalized states $\frac{N_{\rm exc}}{N_{\rm exc}}$

$$|\Psi_{\rm exciton}\rangle = \sum_{n} c_n |n\rangle$$

where $N_{\rm exc} \sim$ 5-10; $|n\rangle =$ configuration with single excitation on *n*th monomer

- trapping due to excitonphonon interactions
- J-aggregate: end-to-end alignment of monomer units; lowest state of the exciton manifold is the bright state
- H-aggregate: plane-to-plane stacked geometry; highest state of the exciton manifold is the bright state
- HJ-aggregate: combination of both, as in stacked oligomers Yamagata, Spano, JCP 136, 184901 (2012)

Case Studies I: Exciton Migration Guided by Conformational Dynamics Case Studies II: Charge Transfer Excitons & Charge Separation Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

HJ-Aggregate: Vibronic Lattice Model

 here: analytic mapping of oligomer PES onto Hückel type model in 1D or 2D: solution to an inverse eigenvalue problem

(NB.: V_G/V_E : monomer potentials, w: site-to-site coupling)

Case Studies I: Exciton Migration Guided by Conformational Dynamics Case Studies II: Charge Transfer Excitons & Charge Separation Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

System-Bath Models

S region: e.g., electronic degrees of freedom (electron-hole states)

B region: all vibrations (phonons) mapped to harmonic oscillator model

$$\hat{H}_B + \hat{H}_{SB} = \sum_n \frac{1}{2} (\hat{p}_n^2 + \frac{1}{2} \omega_n^2 \hat{x}_n^2) + \hat{s} \sum_n c_n \hat{x}_n$$

$$J(\boldsymbol{\omega}) = \pi/2\sum_{n} c_{n}^{2}/\omega_{n}\delta(\boldsymbol{\omega}-\omega_{n})$$

spectral density

Case Studies I: Exciton Migration Guided by Conformational Dynamics Case Studies II: Charge Transfer Excitons & Charge Separation Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

Spectral Densities from Electronic Structure Calculations^(*)

$$J(\boldsymbol{\omega}) = \frac{\pi}{2} \sum_{n}^{N} \frac{c_n^2}{\omega_n} \boldsymbol{\delta}(\boldsymbol{\omega} - \boldsymbol{\omega}_n) \simeq \frac{\pi}{2} \sum_{n}^{N} \frac{c_n^2}{\pi} \frac{\Delta}{(\boldsymbol{\omega} - \boldsymbol{\omega}_n)^2 + \Delta^2}$$

Tamura, Martinazzo, Ruckenbauer, Burghardt, J. Chem. Phys., 137, 22A540 (2012)

(*)NB. Alternatively: obtain SD's from correlation functions (MD, CPMD, ...)

Case Studies I: Exciton Migration Guided by Conformational Dynamics Case Studies II: Charge Transfer Excitons & Charge Separation Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

Bath Dynamics in Less Dimensions: Effective-Mode Chains

Martinazzo, Vacchini, Hughes, Burghardt, J. Chem. Phys. 134, 011101 (2011), Hughes, Christ, Burghardt, J. Chem. Phys. 131, 024109 (2009) Tamura, Bittner, Burghardt, J. Chem. Phys. 126, 021103 (2007), Gindensperger, Köppel, Cederbaum, J. Chem. Phys. 126, 034106 (2007) Cederbaum, Gindensperger, Burghardt, Phys. Rev. Lett. 94, 113003 (2005), Garg, Onucic, Ambegaokar, J. Chem. Phys. 83, 4491 (1985)

$$\hat{H}_{SB} + \hat{H}_B = \hat{s} \sum_i c_n \hat{x}_n + \hat{H}_B \longrightarrow D \hat{s} \hat{X}_1 + d_{12} \hat{X}_1 \hat{X}_2 + \ldots + \hat{X}_M \text{-residual bath}$$

- orthogonal coordinate transformation $\hat{X} = \mathbf{T}\hat{x}$
- short-time dynamics captured by first few effective modes
- truncate hierarchical chain to define approximate, reduced-dimensional model
- (quasi-)Markovian closure
- connection to TD-DMRG!

Unitary Propagation vs. Master Equations

- **1** explicit, multidimensional dynamics for the full system + bath space: wavefunction $\psi_{SB}(t)$ or density operator $\hat{\rho}_{SB}(t) = \sum_{n} p_n |\psi_{n,SB}(t)\rangle \langle \psi_{n,SB}(t)|$
 - → typically (ML-)MCTDH

Meyer, Manthe, Cederbaum, Chem. Phys. Lett. 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)

- **2** reduced dynamics (master equation) methods: $\hat{\rho}_{S}(t) = \text{Tr}_{B}\hat{\rho}_{SB}(t)$
 - → typically Hierarchy of Equations of Motion (HEOM) Tanimura, J. Phys. Soc. Jpn. **75**, 082001 (2006)
- (3) intermediate methods: explicit treatment of subsystem + effective-mode (E) part of the bath + master equation for residual (B') bath:²

$$\frac{\partial \hat{\rho}_{SE}}{\partial t} = -\frac{i}{\hbar} [\hat{H}_{SE}, \hat{\rho}_{SE}(t)] + \hat{L}_{diss}^{(B')} \hat{\rho}_{SE}(t) \quad ; \quad \hat{\rho}_{SE}(t) = \mathrm{Tr}_{\mathbf{B}'} \hat{\rho}_{SEB'}(t)$$

²e.g., Caldeira-Leggett: $\hat{L}_{diss}^{(B')}\hat{\rho}_{SE} = -i\frac{\gamma}{\hbar}[\hat{X}_E, [\hat{P}_E, \hat{\rho}_{SE}]_+] - \frac{2\gamma M kT}{\hbar^2}[\hat{X}_E, [\hat{X}_E, \hat{\rho}_{SE}]]$

Case Studies I: Exciton Migration Guided by Conformational Dynamics Case Studies II: Charge Transfer Excitons & Charge Separation Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

Unitary Dynamics: MCTDH

$$\Psi(r,t) = \sum_{J} A_{J}(t) \ \Phi_{J}(r,t) \equiv \sum_{j_{1}=1}^{n_{1}} \dots \sum_{j_{N}=1}^{n_{N}} A_{j_{1}\dots j_{N}}(t) \prod_{\kappa=1}^{N} \varphi_{j_{\kappa}}^{(\kappa)}(r_{\kappa},t)$$

- Multi-Configuration Time-Dependent Hartree: tensor approximation scheme Meyer, Manthe, Cederbaum, Chem. Phys. Lett. 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)
- EoM's from the Dirac-Frenkel variational principle: $\langle \delta \Psi | \hat{H} i rac{\partial}{\partial t} | \Psi
 angle = 0$
- MCTDH takes one to 50-100 modes; exponential scaling alleviated
- restriction on the form of the potential: sums over products
- related multi-layer variant (ML-MCTDH) goes up to 1000 modes Wang, Thoss, J. Chem. Phys. 119, 1289 (2003), Manthe, J. Chem. Phys. 128, 164116 (2008), Vendrell, Meyer, *ibid* 134, 044135 (2011)
 related MCTDH-F (fermion) and MCTDH-B (boson) methods
- Kato, Kono, Chem. Phys. Lett. 392, 533 (2004), Nest, Klamroth, Saalfrank, J. Chem. Phys. 122, 124102 (2005) Alon, Streltsov, Cederbaum, Phys. Lett. A 362, 453 (2007)
- density matrix variant Raab, Burghardt, Meyer, J. Chem. Phys. 111, 8759 (1999)
- hybrid approaches: e.g., Gaussian-based variant (G-MCTDH, vMCG) Burghardt, Meyer, Cederbaum, J. Chem. Phys. 111, 2927 (1999), Worth, Burghardt, Chem. Phys. Lett. 368, 502 (2003)

Multi-Layer(ML)-MCTDH: Hierarchical Tensor Form

$$\Psi(r,t) = \sum_J A_J(t) \Phi_J(r,t) = \sum_J A_J(t) \prod_{\kappa=1}^M \varphi_{j_\kappa}^{(\kappa)}(r_\kappa,t)$$

where the 1st-layer SPFs $\phi_{j_{\kappa}}^{(\kappa)}$ are now built as superpositions of 2nd-layer SPFs,

$$\varphi_{j_{\kappa}}^{(\kappa)}(r_{\kappa},t) = \sum_{L} B_{j,L}^{(\kappa)}(t) \Phi_{L}^{(\kappa)}(r_{\kappa},t) = \sum_{L} B_{j,L}^{(\kappa)}(t) \prod_{\mu} \varphi_{l_{\mu}}^{(\kappa,\mu)}(r_{\kappa_{\mu}},t)$$

... and so on ...

- intra-SPF correlations via MCTDH form
- continue to higher orders: ML-MCTDH
- "hierarchical Tucker format"
- recent Gaussian-based variant Römer, Ruckenbauer, Burghardt, J. Chem. Phys. 138, 064106 (2013)

Wang, Thoss, J. Chem. Phys. 119, 1289 (2003), Manthe, J. Chem. Phys. 128, 164116 (2008), Vendrell, Meyer, J. Chem. Phys. 134, 044135 (2011)

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Topics

Photoinduced Energy & Charge Transfer in Functional Organic Materials Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

2 Case Studies I: Exciton Migration Guided by Conformational Dynamics Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Scase Studies II: Charge Transfer Excitons & Charge Separation Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

T = 140 f

T = 220

235 240 245

A 2.45

Exciton Dynamics in Organic Semiconducting Polymers

~0.1-1 ps: coherent intra-chain excitation energy transfer (EET) dynamics ~0.1-1 ps: self-trapped exciton-polaron states ~0.1-few ps: torsional geometry relaxation interfering with EET ~1-10 ps: inter-chain EET ~ps-ns: thermally assisted hopping

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Exciton Migration Guided by Conformational Dynamics

- full quantum dynamical study for small oligomers (5-20 units)
- Oligothiophene (OT) and Oligo-Phenylenevinylene (OPV)
- ML-MCTDH (up to 50 states, 100 vibrational modes)
- monomer-based, *ab initio* parametrized Hamiltonian

Binder, Wahl, Römer, Burghardt, Faraday Discuss 163, 205 (2013) Panda, Plasser, Aquino, Burghardt, Lischka J. Phys. Chem. A, 117, 2181 (2013) Wahl, Binder, Burghardt Comp. Theor. Chem. 1040, 167 (2014)

- Is the transfer dynamics on ultrafast time scales coherent or of hopping type?
- Is a trapped exciton-polaron generated and if so, on which time scale?
- Is the spectroscopic unit concept valid?

see also: Tretiak, Saxena, Martin, Bishop, Conformational Dynamics of Photoexcited Conjugated Molecules, Phys. Rev. Lett. 89, 097402 (2002)

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Electronic Structure: Trapping in OPV Oligomers

Collaboration with H. Lischka, F. Plasser (Vienna/Texas Tech/Tianjin University)

- high-level electronic structure methods (ADC(2), CC2, MRCI)
- exciton trapping, due to BLA modes, described correctly

Panda, Plasser, Aquino, Burghardt, Lischka, JPCA, 117, 2181 (2013), see also: Sterpone, Rossky, JPCB 112, 4983 (2008), Nayyar et al., JPCL 2, 566 (2011)

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Dynamics: Test Case OT-20

- Do we see trapped exciton-polarons in the dynamics?
- How exactly does the exciton migrate as the conjugation break "heals"?
- How does the spatial extension of the exciton change as a function of conformational (torsional) fluctuations?

Monomer representation: most unbiased picture to answer these questions!

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Relevant Coordinates: Torsions, CC Stretch, Ring Modes

- analytical, pointwise mapping of oligomer PES's onto a Frenkel model
- diabatization in terms of solution to an inverse eigenvalue problem
- $\bullet\,$ applicable to "extended Hückel systems" of J / H / HJ-aggregate type

Binder, Römer, Wahl, Burghardt, J. Chem. Phys., 141, 014101 (2014), Binder, Polkehn, Ma, Burghardt, Chem. Phys. 482, 16 (2017)

Ab initio Frenkel-Holstein Hamiltonian

$$\hat{H} = \sum_{n,n'=1}^{N} \left(\delta_{n,n'} \hat{T} + \delta_{n,n'} \hat{V}_{n}^{\text{site}} + \hat{V}_{n,n'}^{\text{exc}} \right) \left| n \right\rangle \left\langle n' \right| + \hat{H}_{\text{bath}} \hat{1}$$

• kinetic energy in curvilinear coordinates (using TNUM code):

$$\hat{T} = \frac{1}{2} \left(\sum_{n=1}^{N} G_{xx} \hat{p}_{x_n}^2 + \sum_{n=1}^{N-1} (G_{yy} \hat{p}_{y_{n,n+1}}^2 + G_{\theta\theta} \hat{p}_{\theta_{n,n+1}}^2) + 2 \sum_{n=1}^{N} G_{xy} \hat{p}_{x_n} (\hat{p}_{y_{n,n+1}} + \hat{p}_{y_{n,n-1}}) \right)$$

site energies:

$$\hat{V}_n^{\text{site}}(\{\hat{x}, \hat{y}, \hat{\theta}\}) = \hat{V}_0(\{\hat{x}, \hat{y}, \hat{\theta}\}) + \hat{\Delta}_n(\hat{x}_n, \hat{y}_{n,n\pm 1}, \hat{\theta}_{n,n\pm 1})$$

with the difference potential

$$\hat{\Delta}_{n}(\hat{x}_{n},\hat{y}_{n,n\pm1},\hat{\theta}_{n,n\pm1}) = c_{\mathsf{E}} + \hat{v}_{\mathsf{E}}\left(\hat{x}_{n},\hat{y}_{n,n\pm1},\hat{\theta}_{n,n\pm1}\right) - \hat{v}_{\mathsf{G}}\left(\hat{x}_{n},\hat{y}_{n,n\pm1},\hat{\theta}_{n,n\pm1}\right)$$

excitonic coupling:

$$\hat{V}_{n,n\pm 1}^{ ext{exc}}(\hat{ heta}_{n,n\pm 1}) = \hat{w}(\hat{ heta}_{n,n\pm 1})$$
 \blacktriangleleft large (of the order of 1 eV)

reduces to standard Frenkel-Holstein model if

- the excitonic coupling is constant
- a single site-local mode per site is included
- the monomer potentials conform to shifted harmonic-oscillator potentials

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Relevant Coordinates: Torsions, CC Stretch, Ring Modes

• high-dimensional PES as a function of site-local and site-correlated modes

• 20 monomer sites, 50 phonon modes

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Quantum Dynamics: Hierarchical Multi-Layer MCTDH Tree

- ML-MCTDH (20 states, 50 modes)
- 7 layers, 2-10 single-particle functions (SPFs) highly correlated system!
- combined electronic particle (here, 20 states)
- active torsional mode as isolated particle (long DVR grid)
- delocalized initial condition prepared by imaginary time propagation

Binder, Lauvergnat, Burghardt, Phys. Rev. Lett. 120, 227401 (2018), Supp. Mater.

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Quantum Dynamics: 20-Site J-Aggregate with Central Torsion

Binder, Lauvergnat, Burghardt, Phys. Rev. Lett. 120, 227401 (2018)

- ML-MCTDH calculations: 20 states, 50 modes (6-layer set-up)
- earliest time scale: exciton trapping (contraction by ~3 sites)
- high-frequency modes adapt to exciton: quasi-stationary trapping
- LEGS = local exciton ground state: nodeless left-localized exciton Tozer, Barford, JPCA 116:10310 (2012)
- ultrafast decay of transition dipole autocorrelation function (~10 fs): $\langle \mu(0)\mu(t) \rangle = |\mu|^2 \langle \psi_{exc}(0) | \psi_{exc}(t) \rangle$
- relates to anisotropy decay: ${\sim}40~{
 m fs}$

Grage et al., Phys. Rev. B, 67, 205207 (2003)

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Quantum Dynamics: 20-Site J-Aggregate with Central Torsion

C-C inter-monomer mode + local C=C + torsion + bath

C-C inter-monomer + torsion + bath

PPES 2018

Ultrafast Vibronic Dynamics of Functional Organic Polymer Materials

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Electronic Structure – Torsion Dependence

• transition density analysis

Panda, Plasser, Aquino, Burghardt, Lischka, JPCA (2013), Binder, Lauvergnat, Burghardt, Phys. Rev. Lett. 120, 227401 (2018)

- particle-in-the-box type *e*-*h* states
- marked dependence on torsion
- LEGS = local exciton ground state: nodeless S₁ exciton @180° Tozer, Barford, JPCA 116:10310 (2012)

PPES 2018

Ultrafast Vibronic Dynamics of Functional Organic Polymer Materials

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Two Time-Scale Process

- dynamics is essentially happening on coupled S_1/S_2 surfaces
- effective torsion potentials including stabilization due to trapping $(S_{1,tr}/S_{2,tr})^1$
- initial left/right localized state = superposition of S_1/S_2
- energy loss due to external bath acting on torsional mode
- exciton-polaron: quasi-stationary trapping at all stages of the dynamics

¹i.e., "polaron transformed" potentials

Binder, Lauvergnat, Burghardt, PRL 120, 227401 (2018)

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Initial vs. Final States: Absorption Spectra

• spectra calculated from Fourier transform of $C(t) = \langle \psi(0) | \psi(t) \rangle$:

(a) full 20-mer system: torsionally relaxed, stationary state

(b) left-localized 10-mer fragment for initial defect structure

(a) ← (b): downhill energy transfer

dominant vibronic signature of ring-breathing mode

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Semiclassical SQC/MM dynamics (T=0K)

- SQC/MM = Symmetrical Quasi-Classical / Meyer-Miller model
- single-trajectory result close to MCTDH, but Wigner average "fuzzy"

Liang, Cotton, Binder, Hegger, Burghardt, Miller, J. Chem. Phys., in press (2018)

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Ehrenfest/Langevin dynamics (T=0K)

- single-trajectory dynamics exhibits fluctuations
- Wigner average "fuzzy" due to Wigner sampling of high-frequency modes

Liang, Cotton, Binder, Hegger, Burghardt, Miller, J. Chem. Phys., in press (2018)

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Adiabatic Populations (T=0K)

- SQC/MM reproduces the adiabatic populations quite accurately
- Ehrenfest shows severe shortcomings (related to detailed-balance problem)
- both methods incur problems due to ZPE of high-frequency modes

Liang, Cotton, Binder, Hegger, Burghardt, Miller, J. Chem. Phys., in press (2018)
Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Temperature Effects: Ehrenfest/Langevin dynamics

- single-trajectory simulation, with ZPE of high-frequency modes removed
- exciton migration at higher T is related to repeated non-adiabatic events
- interplay of torsional fluctuations and trapping explains observations
- quantum benchmark simulations needed (via random-phase wavefunctions, or thermofield method, combined with MCTDH)

Wahl, Hegger, Binder, Burghardt, in preparation

Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Polarons in π-Conjugated Polymers: Anderson or Landau? William Barford,^{*,†} Max Marcus,^{†,‡} and Oliver Robert Tozer^{†,§}

"We show that the high-frequency C-C bond oscillation only causes Landau polarons for a very narrow parameter regime; generally we expect disorder to dominate and Anderson polarons to be a more applicable description."

J. Phys. Chem. A 120, 615 (2016)

Excitons in conjugated polymers: Do we need a paradigma change?

Wichard J. D. Beenken

"The fact that we could not find partition of excitons by structural defects – except of rare gauche defects and accidental chemical defects – leads us to the conclusion that we have to search for new mechanisms."

Phys. Status Solidi A 206, 2750 (2009)

Our interpretation: Exciton-polarons driven by defects and fluctuations

- exciton-polaron species: "exciton dressed by a cloud of local oscillators"
- typical delocalization length: 5-10 units (in line with experiment)
- Landau polaron (or Holstein "large" polaron) subject to disorder
- torsional defects confine excitons to sublattices ("spectroscopic units")
- hopping-type transition between exciton-polaron states induced by torsion
- elementary step is of "coherent hopping" type: highly correlated dynamics!

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Topics

Photoinduced Energy & Charge Transfer in Functional Organic Materials Goal: First-Principles Approach to Organic Photovoltaics Electron-Hole Lattice Models & Vibronic Coupling Quantum Dynamics in Many Dimensions

2 Case Studies I: Exciton Migration Guided by Conformational Dynamics Torsion-Induced Intra-Chain Exciton Migration Ultrafast, Coherent Exciton-Polaron Dynamics Do Semiclassical and Ehrenfest-Langevin Dynamics Work?

Ocase Studies II: Charge Transfer Excitons & Charge Separation Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Charge Transfer Excitons in Neat Regioregular Polythiophene

experiment: Reid et al., Chem. Mater. 26, 561 (2014), De Sio et al., Nature Comm. 7, 13742 (2016)

- inter-chain CTX states favored in PT (as compared with, e.g., PPV)
- electronic structure (ADC(2), TDDFT): low-energy inter-chain CT states
- representative quantum dynamics calculations for $(OT)_n$, n=3, 5
- diabatization + Linear Vibronic Coupling (LVC) model
- ML-MCTDH for up to 13 electronic states, 196 modes

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Charge Transfer Excitons in Neat Regioregular Polythiophene

2D electronic spectroscopy P3HT (thin film)

De Sio et al., Nature Comm. 7, 13742 (2016)

- polaron cross-peak signal assigned to inter-chain CTX states
- sustained high-frequency oscillations (23 fs periodicity)
- simulated using 2-state/1-mode model
- similar observations by Scholes & collaborators
- What is the origin of the persistent oscillations?

Song et al., JCP 142, 212410 (2015)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Modified H-Aggregate: What's the Bright State?

Popp, Polkehn, Tamura, Burghardt, to be submitted

- (OT)₅ stack: significant mixing of XT and CT states
- bright state (S₅) looks distinctly different from typical H-aggregate (inverted curvature of nodeless exciton wavefunction) Hestand and Spano, J. Chem. Phys. 143, 244707 (2015)
- transition densities for H-type dimer via TheoDORE program (F. Plasser)
- very good agreement between ADC(2) and TDDFT/ ω B97XD results
- in line with benchmark study by Lischka & collaborators JCTC 10, 3280 (2014)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Spectral Densities (SD's)

- SD's calculated from state-specific Frank-Condon gradients
- SD's show large amplitude (\sim Huang-Rhys factor) for CC stretch modes
- SD's similar for various electronic states
- use SD's to parametrize Linear Vibronic Coupling (LVC) Hamiltonian
- ML-MCTDH: 13 states/196 modes (or 78 effective modes)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

LVC Model – Full Quantum Dynamics (13 States, 196 modes)

$$\hat{H} = \hat{H}_{N}^{\text{on-site}} + \hat{H}^{\text{coup}} + \hat{H}^{\text{e-ph}} \\ \hat{H}^{\text{coupl}} = j \sum_{n=1}^{N} |XT_n\rangle \langle XT_{n+1}| + \kappa_1 \sum_{n=1}^{N-1} |XT_n\rangle \langle CTX_{n+1,n}| + \kappa_2 \sum_{n=1}^{N-1} |XT_n\rangle \langle CTX_{n,n+1}| + h.c.$$

- two diabatization schemes Tamura, JPCA, 120, 9341 (2016), Blancafort, Voityuk, JCP 140, 095102 (2014)
- pronounced oscillatory signature in all state populations

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Collective Vibronic Response

- high-frequency normal modes of OT fragments are evolving in phase
- amplification of vibronic effects due to exciton delocalization
- · effective modes: linear combinations of dominant normal modes
- generalized effective-mode transformation (correlated XT/CTX modes)

Popp, Polkehn, Tamura, Burghardt, to be submitted

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Do CTX States Affect Interfacial Charge Generation?

- CTX-to-CS transfer can circumvent interfacial XT-to-CS transfer step
- here: parameter determination via diabatization by projection onto reference wavefunctions Tamura, JPCA 120, 9341 2016, Polkehn, Tamura, Burghardt, J. Phys. B, 51, 014003 (2018)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Interfacial Charge Generation in P3HT:PCBM Type Systems

Tamura, Burghardt, JACS (Communication) 135, 16364 (2013) Huix-Rotllant, Tamura, Burghardt, J. Phys. Chem. Lett., 6, 1702 (2015)

factors favoring ultrafast *e*-*h* separation:

- electron delocalization over fullerene aggregates: strong decrease of barrier
- hole delocalization on oligothiophenes
- XT delocalization in H-aggregate donor
- exciton (XT) excess energy: "Hot CT" mechanism

Interfacial Charge Separation in the Absence of CTX States

$$\hat{H} = \hat{H}_{\mathrm{XT}_{1}-\mathrm{CT}}(\mathbf{x}) + \sum_{n} \hat{H}_{\mathrm{CS}}^{(n)}(\mathbf{x}) |\mathrm{CS}_{n}\rangle \langle \mathrm{CS}_{n}| + t(\mathbf{x})(|\mathrm{CS}_{1}\rangle \langle \mathrm{CT}| + \sum_{nn'} |\mathrm{CS}_{n}\rangle \langle \mathrm{CS}_{n'}| + h.c.) \\ + \sum_{n} \hat{H}_{\mathrm{XT}}^{(n)}(\mathbf{x}) |\mathrm{XT}_{n}\rangle \langle \mathrm{XT}_{n}| + j(\mathbf{x}) \sum_{n} (|\mathrm{XT}_{n}\rangle \langle \mathrm{XT}_{n'}| + h.c.)$$

- CT/CS generation depends on exciton (de)localization
- ML-MCTDH calculations: 26 states/120 modes (barrier II)

Tamura, Burghardt, JACS (Communication) 135, 16364 (2013), Huix-Rotllant, Tamura, Burghardt, J. Phys. Chem. Lett. 6, 1702 (2015)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Electronic Eigenstate Picture

- interplay of delocalization, internal conversion, and charge transfer
- de/localized initial condition (blue/red) reduces/enhances interfacial trapping Huix-Rotllant, Tamura, Burghardt, J. Phys. Chem. Lett., 6, 1702 (2015)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Interfacial Charge Separation in the Presence of CTX States

- CTX (turquoise) states emerge prominently as additional energetic traps
- ML-MCTDH calculations up to 182 states and 112 modes
- for a single CTX state: CS formation slightly reduced
- for larger models (50/182 states): reduction of CS yield is significant
- results depend in a sensitive fashion upon energetics and electronic couplings

Polkehn, Tamura, Burghardt, J. Phys. B, Special Issue "Light Energy Conversion, Light Harvesting", 51, 014003 (2018).

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

P3HT/PCBM Model Including CTX States

•

Charge Transfer Excitons in Neat Polythiophene **Collective Vibronic Effects** Charge Transfer Excitons and Interfacial Charge Separation

Marcus Theory Doesn't Work for Ultrafast Exciton Break-Up

$$k_{\rm M} = \frac{|V|^2}{\hbar} \sqrt{\frac{\pi}{\lambda k_B T}} \exp\left[-\frac{(\lambda + \Delta G_0)^2}{4\lambda k_B T}\right] \quad ; \quad k_{\rm MLJ} = \frac{|V|^2}{\hbar} \sqrt{\frac{\pi}{\lambda_0 k_B T}} \sum_{\nu=0}^{\infty} \frac{e^{-S} S^{\nu}}{\nu!} \exp\left[-\frac{(\lambda + \Delta G_0)^2}{4\lambda k_B T}\right]$$

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Summary

1 Molecular-Level Approach to Organic Photovoltaics

- *e*-*h* lattice model: highlights fragment properties + molecular packing
- extensions to conical intersections, multi-exciton states¹ etc.
- · accurate on-the-fly dynamics remains highly challenging

¹See our work on singlet fission: Tamura, Huix-Rotllant, Burghardt, Olivier, Beljonne, Phys. Rev. Lett. 115, 107401 (2015)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Summary

1 Molecular-Level Approach to Organic Photovoltaics

- *e*-*h* lattice model: highlights fragment properties + molecular packing
- extensions to conical intersections, multi-exciton states¹ etc.
- · accurate on-the-fly dynamics remains highly challenging

2 Coherent Exciton Migration

- ultrafast formation of quasi-stationary exciton-polaron states
- · elementary exciton-polaron migration step is coherent
- strongly correlated exciton-phonon states

¹See our work on singlet fission: Tamura, Huix-Rotllant, Burghardt, Olivier, Beljonne, Phys. Rev. Lett. 115, 107401 (2015)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Summary

1 Molecular-Level Approach to Organic Photovoltaics

- *e*-*h* lattice model: highlights fragment properties + molecular packing
- extensions to conical intersections, multi-exciton states¹ etc.
- · accurate on-the-fly dynamics remains highly challenging

2 Coherent Exciton Migration

- ultrafast formation of quasi-stationary exciton-polaron states
- elementary exciton-polaron migration step is coherent
- strongly correlated exciton-phonon states
- **③** Role of Charge Transfer Excitons in Regioregular Domains
 - charge-transfer excitons in regioregular oligothiophene phases
 - coherent formation of charge transfer excitons
 - impact on charge separation at donor-acceptor interface

¹See our work on singlet fission: Tamura, Huix-Rotllant, Burghardt, Olivier, Beljonne, Phys. Rev. Lett. 115, 107401 (2015)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Summary

1 Molecular-Level Approach to Organic Photovoltaics

- *e*-*h* lattice model: highlights fragment properties + molecular packing
- extensions to conical intersections, multi-exciton states¹ etc.
- · accurate on-the-fly dynamics remains highly challenging

2 Coherent Exciton Migration

- ultrafast formation of quasi-stationary exciton-polaron states
- elementary exciton-polaron migration step is coherent
- strongly correlated exciton-phonon states
- **③** Role of Charge Transfer Excitons in Regioregular Domains
 - charge-transfer excitons in regioregular oligothiophene phases
 - coherent formation of charge transfer excitons
 - impact on charge separation at donor-acceptor interface

¹See our work on singlet fission: Tamura, Huix-Rotllant, Burghardt, Olivier, Beljonne, Phys. Rev. Lett. 115, 107401 (2015)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Insights from Spectroscopy

- P3HT: inhomogeneous broadening across 200 nm
- huge red shift between solution and bulk: ordered low-energy conformations
- signatures of vibronic structure due to high-frequency modes (${\sim}1500~{
 m cm}^{-1}$)
- single-molecule spectroscopy unravels signals from single chromophores Thiessen, Vogelsang, Adachi, Steiner, Vanden Bout, Lupton, PNAS E3550 (2013)

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

Time-Resolved Spectroscopies

Collini, Scholes, Science 323, 369 (2009)

- 2D electronic spectroscopy monitors ultrafast energy and charge transfer Anna, Song, Dinshaw, Scholes, Pure. Appl. Chem. 85, 1307 (2013) De Sio, Lienau, PCCP 19, 18813 (2017)
- time-resolved Raman spectroscopy provides signatures of ultrafast structural dynamics

Zhou, Yu, Bragg, J. Phys. Chem. Lett. 6, 3496 (2015)

Acknowledgments & Collaborations

Group Frankfurt:

- M. Polkehn
- P. Eisenbrandt
- R. Binder
- J. von Cosel
- K. Falahati
- D. Picconi
- W. Popp
- M. Bonfanti
- K. Schwinn

Former members:

- J. Wahl
- M. Huix-Rotllant

Collaborations:

- H. Tamura (Tokyo, Japan)
- W. H. Miller, S. Cotton, R. Liang (Berkeley)
- K. H. Hughes (Bangor, UK)
- R. Martinazzo (Milano, Italy)
- H. Lischka, A. Aquino (TTU, USA)
- F. Plasser (Vienna, Austria)
- D. Lauvergnat (Orsay, France)
- S. Haacke, S. Méry (Strasbourg, France)
- G. d'Avino (Institut Néel, Grenoble)
- G. A. Worth (London, UK)
- A. Panda (IIT Guwahati, India)
- D. Beljonne, Y. Olivier (Mons, Belgium)

Thanks to: DFG / ANR (France) for financial support

Charge Transfer Excitons in Neat Polythiophene Collective Vibronic Effects Charge Transfer Excitons and Interfacial Charge Separation

 ϱ

Theoretical Chemistry of Complex Systems

AK Burghardt

Ultrafast Vibronic Dynamics of Functional Organic Polymer Materials

PPES 2018

Absorption Spectra

• spectra calculated from Fourier transform of $C(t) = \langle \psi(0) | \psi(t) \rangle$ for OT H-aggregate (6 layers)

Highly Ordered DA Assemblies: Liquid Crystalline Material

- Roland, Ramirez, Léonard et al., PCCP, 14, 273 (2012)
- competing ultrafast energy transfer (EET) and charge transfer (CT) processes
- in chloroform: EET in 130 fs, followed by CT in 2.7 ps
- in liquid crystalline phase: CT in 60 fs!
- relatively fast recombination (50 ps) material doesn't really work well ...

What is Happening in the First-Generation Material?

- first-generation material: liquid crystalline smectic mesophase
- idea: D/A stacks serve as "quantum wells" for carrier transport
- much faster charge transfer in film than solution (\sim 50 fs vs. \sim 3 ps)
- calculations suggest unexpected inter-chain D-A interactions

$$\hat{H} = \hat{H}_{\text{on-site}} + \hat{H}_{\text{coupl}} + \hat{H}_{\text{e-ph}}$$

$$\begin{split} \hat{H}_{\text{on-site}} &= \varepsilon_D \sum_{i=1}^{N_D} |D_i^{XT}\rangle \langle D_i^{XT}| + \varepsilon_A \sum_{i=1}^{N_A} |A_i^{XT}\rangle \langle A_i^{XT}| + \sum_{i=1}^{N_D} \sum_{j=1}^{N_A} \varepsilon_{D_i^+ A_j^-} |D_i^+ A_j^-\rangle \langle D_i^+ A_j^-| \\ \hat{H}_{\text{coupl}} &= J_D \sum_{i=1}^{N_D} \sum_{j=1}^{N_D} (|D_i^{XT}\rangle \langle D_j^{XT}| + \text{h.c.}) + J_A \sum_{i=1}^{N_A} \sum_{j=1}^{N_A} (|A_i^{XT}\rangle \langle A_j^{XT}| + \text{h.c.}) + J_{DA} \sum_{i=1}^{N_D} \sum_{j=1}^{N_A} (|D_i^{XT}\rangle \langle A_j^{XT}| + \text{h.c.}) \\ &+ \kappa_D \sum_{i=1}^{N_D} \sum_{j=1}^{N_A} (|D_i^{XT}\rangle \langle D_i^+ A_j^-| + \text{h.c.}) + \kappa_A \sum_{i=1}^{N_A} \sum_{j=1}^{N_A} (|A_i^{XT}\rangle \langle D_j^+ A_i^-| + \text{h.c.}) \\ &+ t_e \sum_{i=1}^{N_D} \sum_{j=2}^{N_A-1} (|D_i^+ A_j^-\rangle \langle D_i^+ A_{j\pm 1}^-| + \text{h.c.}) + t_h \sum_{i=2}^{N_D-1} \sum_{j=1}^{N_A} (|D_i^+ A_j^-\rangle \langle D_{i\pm 1}^+ A_j^-| + \text{h.c.}) \end{split}$$

$$\hat{H}^{\text{e-ph}} = \hat{T}_{\text{ph}}(\{\zeta^{D}\}, \{\zeta^{A}\}, \{\zeta^{DA}\}) + \sum_{i} \hat{V}_{D}^{XT}(\{\zeta^{D}_{i}\}, \{\zeta^{DA}_{i}\}) |D_{i}^{XT}\rangle \langle D_{i}^{XT}| + \sum_{i} \hat{V}_{A}^{XT}(\{\zeta_{i}^{A}\}, \{\zeta_{i}^{DA}\}) |A_{i}^{XT}\rangle \langle A_{i}^{XT}|$$

PPES 2018

Ultrafast Vibronic Dynamics of Functional Organic Polymer Materials

Liquid Crystalline Phase – Energetics

- energetics at Franck-Condon geometry
- state mixing: excitonic manifold and CS(-1) state
- but higher charge separated states barely accessible

- on-site energies computed from ADC(2) and TDDFT
- internal field: 20 V/ μ m
- CS(-1) state strongly stabilized

Polkehn, Tamura, Eisenbrandt, Haacke, Méry, Burghardt, J. Phys. Chem. Lett., 7, 1327 (2016)

Liquid Crystalline Phase – Dynamics

- transient absorption experiments (Haacke)
- 156 states/48 modes

PPES 2018

Ultrafast Vibronic Dynamics of Functional Organic Polymer Materials

Second Generation Material: Zipper-like Molecular Packing

- tunable donor species: alternating thiophene/fluorene/benzothiadiazole units; electrodeficient bridge to the perylene acceptor – chemical design!
- organization in lamellae (both DA and ADA but not DAD)
- comparatively slow CT formation (tens of ps) and less recombination

Second Generation Material: In Progress ...

- coarse-grained model for Kinetic Monte Carlo (KMC) simulations
- microelectrostatics calculations (collaboration with G. d'Avino, Grenoble)
- multi-scale modeling needed!

Electronic Structure – Torsion Dependence

PPES 2018

- transition density analysis Panda, Plasser, Aquino, Burghardt, Lischka, JPCA (2013)
- particle-in-the-box type *e*-*h* states
- marked dependence on torsion
- LEGS = local exciton ground state: nodeless S₁ exciton @180° Tozer, Barford, JPCA 116:10310 (2012)

Ultrafast Vibronic Dynamics of Functional Organic Polymer Materials

Signatures of Excitonic Coherence

- windowed Fourier transform of time-dependent XT-XT electronic coherence
- localized initial condition produces beatings within excitonic manifold
- very similar frequency as dominant vibrations (\sim 0.1-0.2 eV)
- both vibrational and excitonic coherence could contribute

HJ Aggregates: Intra- & Inter-Chain Interactions

- partitioning either monomer-based or oligomer-based
- monomer-based partitioning: on-chain exciton dynamics
- oligomer-based partitioning: interchain exciton and charge transfer dynamics

Temperature Effects: Ehrenfest/Langevin dynamics

- ultrafast transients not correctly reproduced by Ehrenfest dynamics
- at increasing temperatures, fluctuations start driving exciton migration

PPES 2018

Ultrafast Vibronic Dynamics of Functional Organic Polymer Materials
Temperature Effects: Ehrenfest/Langevin dynamics

- ultrafast transients not correctly reproduced by Ehrenfest dynamics
- at increasing temperatures, fluctuations start driving exciton migration

Quantum Coherence Plays a Non-Negligible Role!

$$|\psi(t)\rangle = c_0(t)|0\rangle|\phi_0(t)\rangle + c_1(t)|1\rangle|\phi_1(t)\rangle$$

electronic coherence:

 $\begin{aligned} \rho_{01}(t) &= \mathsf{Tr}[|0\rangle\langle 1|\hat{\rho}(t)] \\ &= \langle 1|\hat{\rho}(t)|0\rangle = c_1^*(t)c_0(t)\langle \phi_1(t)|\phi_0(t)\rangle \end{aligned}$

- coherence ∝ overlap of nuclear wavefunctions
- typical decoherence times: tens to hundreds of fs or more (estimate from $\tau_{\rm dec} \sim \tau_g (6k_BT/\lambda)^{1/2}$ or $\tau_{\rm dec} \sim \gamma^{-1} (\lambda_T/\Delta x)^2)$

Prezdho, Rossky, PRL 81, 5294 (1998)

 loss of coherence not captured by classical trajectory picture

Singlet Fission: Route To Carrier Multiplication

(collaboration with H. Tamura (Sendai/Tokyo), D. Beljonne (Mons))

$$XT \longrightarrow {}^{1}(TT) \longrightarrow T_{1} + T_{2}$$
 (spin conserving)

possibly overcome Shockley-Queisser limit

http://sites.lsa.umich.edu/zimmerman-lab/wp-content/uploads/sites/52/2014/03

- driving force $\Delta E_{\rm XT-TT} < 0$ doesn't explain the whole picture
- possible involvement of intermediate CT states (superexchange)
- vastly different time scales for different materials

- discovered in 1965: anthracene
- reviews by Smith & Michl, Annu. Rev. Phys. Chem. 2013, 64, 361, Chem. Rev. 110, 6891 (2010)

Molecular Packing: Energetics & Electronic Couplings

- energetics of acene series (C)
- trimer model: 9 states (D)

- TIPS-pentacene (A): slip-stacked
- rubrene (B): C_{2h} symmetric

Electronic coupling @ equilib. non-zero for TIPS-pentacene but vanishing for rubrene! (MRMP2 calculations for dimers, el. couplings via diabatization protocol)

Tamura, Huix-Rotllant, Burghardt, Olivier, Beljonne, Phys. Rev. Lett., 115, 107401 (2015)

TIPS-Pentacene: Ultrafast Singlet Fission

- ultrafast, coherent SF
- slip-stacked geometry: avoided crossing
- interfering direct and CT-mediated pathways (electronic coupling via CT's dominates)
- vibrational coherence effectively transferred between XT and TT states (see $\langle \psi_{TT} | \psi_{XT} \rangle$)

Musser et al., Nature Phys. 11, 352 (2015)

 MRMP2 calculations + diabatization

Tamura, Huix-Rotllant, Burghardt, Olivier, Beljonne, Phys. Rev. Lett., 115, 107401 (2015)

Rubrene: Thermally Activated Singlet Fission

- driving force slightly exergonic (like tetracene), but thermally activated SF (picosecond scale)
- C_{2h} crystal geometry: electronic coupling vanishes – conical intersection
- electronic couplings depend on symmetry-breaking coordinate: $V(X) = \lambda X$, $\lambda \sim 10^{-3} \text{ eV}$
- slow, incoherent dynamics
- key influence of molecular packing

Tamura, Huix-Rotllant, Burghardt, Olivier, Beljonne, Phys. Rev. Lett., 115, 107401 (2015)

ML-MCTDH: Example

Exciton-Polaron Dynamics: Adiabatic Picture

- dynamics is essentially happening on coupled S_1/S_2 surfaces
- effective torsion potentials including stabilization due to trapping $(S_{1,tr}/S_{2,tr})^2$
- initial left/right localized state = superposition of S_1/S_2
- energy loss due to external bath acting on torsional mode
- exciton-polaron trapping persists at all stages of the dynamics
- ²i.e., "polaron transformed" potentials

Quantum Dynamics: 20-Site J-Aggregate with Central Torsion

C-C inter-monomer mode + local C=C + torsion + bath

C-C inter-monomer + torsion + bath

PPES 2018

Ultrafast Vibronic Dynamics of Functional Organic Polymer Materials

Interfacial Charge Separation in the Presence of CTX States

• time-dependent free carrier populations

Polkehn, Tamura, Burghardt, J. Phys. B, Special Issue "Light Energy Conversion, Light Harvesting", submitted (2017)

System-Bath Models

S region: e.g., electronic degrees of freedom (electron-hole states)

B region: all vibrations (phonons) mapped to harmonic oscillator model

$$\hat{H}_B + \hat{H}_{SB} = \sum_n \frac{1}{2} (\hat{p}_n^2 + \frac{1}{2} \omega_n^2 \hat{x}_n^2) + \hat{s} \sum_n c_n \hat{x}_n$$

$$J(\boldsymbol{\omega}) = \pi/2\sum_{n} c_{n}^{2}/\omega_{n}\delta(\boldsymbol{\omega}-\omega_{n})$$

spectral density

Spectral Densities from Electronic Structure Calculations^(*)

$$J(\boldsymbol{\omega}) = \frac{\pi}{2} \sum_{n}^{N} \frac{c_n^2}{\omega_n} \delta(\boldsymbol{\omega} - \boldsymbol{\omega}_n) \simeq \frac{\pi}{2} \sum_{n}^{N} \frac{c_n^2}{\pi} \frac{\Delta}{(\boldsymbol{\omega} - \boldsymbol{\omega}_n)^2 + \Delta^2}$$

Tamura, Martinazzo, Ruckenbauer, Burghardt, J. Chem. Phys., 137, 22A540 (2012)

(*)NB. Alternatively: obtain SD's from correlation functions (MD, CPMD, ...)