Variational Multiconfigurational Gaussian Wavepacket Dynamics: Interpolating between Accurate Quantum Dynamics and the Quantum-Classical Limit

I. Burghardt

Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Germany

MPIPKS Workshop QuSeT18 – Quantum and Semiclassical Trajectories Dresden, June 12-14, 2018

Acknowledgments

- M. Ruckenbauer, S. Römer (group Frankfurt)
- P. Eisenbrandt, M. Bonfanti (group Frankfurt)
- T. Ma, R. Hegger (group Frankfurt)
- B. Kloss (group Frankfurt, now Columbia University)
- C. Lubich (Tübingen, Germany)
- E. Pollak, J. Petersen (Weizmann Institute, Israel)
- D. Tannor, W. Koch (Weizmann Institute, Israel)
- B. Poirier (Texas Tech, USA)
- G. A. Worth (UCL London, UK)
- J. C. Tremblay (FU Berlin, Germany)
- D. Shalashilin (Leeds, UK)
- R. Martinazzo (Milano, Italy)

Topics

 Gaussian-based MCTDH (G-MCTDH) Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Topics

 Gaussian-based MCTDH (G-MCTDH) Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

 Two-Layer/Multi-Layer G-MCTDH Two-Layer Extension – Concept Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Topics

 Gaussian-based MCTDH (G-MCTDH) Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

 Two-Layer/Multi-Layer G-MCTDH Two-Layer Extension – Concept Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Quantum-Classical Limit of G-MCTDH Semiclassically Scaled G-MCTDH Quantum-Classical Dynamics Variational Multiconfigurational Ehrenfest Dynamics

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Approximate Wavefunctions from the Dirac-Frenkel Variational Principle

Dirac-Frenkel variational principle (DFVP):

 $\langle \delta \Psi | \hat{H} - i \frac{\partial}{\partial t} | \Psi
angle = 0$ \longrightarrow dynamical equation for $\dot{\Psi}$

C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zürich (2008)

where $\delta \Psi \in \mathscr{T}_{\Psi}\mathscr{M}$ (tangent space wrt the approximate manifold \mathscr{M} on which the wavefunction is defined) Dirac 1930, Frenkel 1934, McLachlan 1964

- the time derivative is then given by $\dot{\Psi} = \mathscr{P}(\Psi) \frac{1}{i} \hat{H} \Psi$
 - where $\mathscr{P}(\Psi)$ projects onto the tangent space
- the residual is minimized: $||\dot{\Psi} \frac{1}{i}\hat{H}\Psi|| = \min$
- interpretation as action principle: $\delta S(\Psi) = \delta \int_{t_0}^{t_1} \langle \Psi(t) | i \frac{\partial}{\partial t} - \hat{H} | \Psi(t) \rangle dt = 0$
- symplectic flow: norm and energy conservation

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Unitary Dynamics in Many Dimensions: MCTDH

$$\Psi(r,t) = \sum_{J} A_{J}(t) \ \Phi_{J}(r,t) \equiv \sum_{j_{1}=1}^{n_{1}} \dots \sum_{j_{f}=1}^{n_{f}} A_{j_{1}\dots j_{f}}(t) \prod_{\kappa} \varphi_{j_{\kappa}}^{(\kappa)}(r_{\kappa},t)$$

- Multi-Configuration Time-Dependent Hartree Meyer, Manthe, Cederbaum, Chem. Phys. Lett. 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)
- EoM's from the Dirac-Frenkel variational principle: $\langle \delta \Psi | \hat{H} i \frac{\partial}{\partial r} | \Psi \rangle = 0$
- MCTDH takes one to 50-100 modes; exponential scaling alleviated
- restriction on the form of the potential: sums over products
- related multi-layer variant (ML-MCTDH) goes up to 1000 modes Wang, Thoss, J. Chem. Phys. 119, 1289 (2003), Manthe, J. Chem. Phys. 128, 164116 (2008), Vendrell, Meyer, *ibid* 134, 044135 (2011)
- related MCTDH-F (fermion) and MCTDH-B (boson) methods Kato, Kono, Chem. Phys. Lett. 392, 533 (2004), Nest, Klamroth, Saalfrank, J. Chem. Phys. 122, 124102 (2005) Alon, Streltsov, Cederbaum, Phys. Lett. A 362, 4353 (2007)
- density matrix variant Raab, Burghardt, Meyer, J. Chem. Phys. 111, 8759 (1999)
- hybrid approaches: e.g., Gaussian-based variant (G-MCTDH, vMCG) Burghardt, Meyer, Cederbaum, J. Chem. Phys. 111, 2927 (1999), Worth, Burghardt, Chem. Phys. Lett. 368, 502 (2003)

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Unitary Dynamics in Many Dimensions: MCTDH

MCTDH: optimal, compact time-dependent SPF basis

Meyer, Manthe, Cederbaum, Chem. Phys. Lett. 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)

$$\Psi(r,t) = \sum_{J} A_{J}(t) \Phi_{J}(r,t)$$

= $\sum_{j_{1}=1}^{n_{1}} \dots \sum_{j_{f}=1}^{n_{f}} A_{j_{1}\dots j_{N}}(t) \varphi_{j_{1}}^{(1)}(r_{1},t) \dots \varphi_{j_{f}}^{(f)}(r_{f},t)$

 A_J : coefficient vector Φ_J : configurations $\varphi_{j\kappa}^{(\kappa)}$: single-particle functions (SPFs) – to be represented in a primitive basis $\{\chi_{i\kappa}\}$

Another convenient notation:

$$\begin{split} \Psi(r,t) &= \sum_{j_{\kappa}=1}^{n_{\kappa}} \varphi_{j_{\kappa}}^{(\kappa)}(r_{\kappa},t) \psi_{j_{\kappa}}^{(\kappa)}(r_{1},\ldots,r_{\kappa-1},r_{\kappa+1},\ldots,r_{N},t) \\ \psi_{j_{\kappa}}^{(\kappa)}: \text{ single-hole functions (SHFs)} \longrightarrow \rho_{ij}^{(\kappa)} = \langle \psi_{j}^{(\kappa)} | \psi_{i}^{(\kappa)} \rangle \text{ reduced density} \end{split}$$

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

MCTDH as Low-Rank Tensor Approximation Scheme

MCTDH: Tucker format representation of coefficient tensor

Consider $\Psi(r,t)$ in terms of the primitive basis (typically DVR¹ grid):

$$\Psi(r,t) = \sum_{i_1=1}^{N_1} \dots \sum_{i_f=1}^{N_f} Y_{i_1\dots i_f}(t) \prod_{\kappa=1}^f \chi_{i_\kappa}^{(\kappa)}(r_\kappa)$$

Tucker format of the coefficient tensor $Y_{i_1...i_f}(t)$:

$$Y_{i_1...i_f}(t) = \sum_{j_1=1}^{n_1} \dots \sum_{j_f=1}^{n_f} A_{j_1...j_f}(t) \prod_{\kappa=1}^f U_{i_{\kappa}j_{\kappa}}^{(\kappa)}(t) \qquad \text{ noting that } n_{\kappa} \ll N_{\kappa}$$

 $\begin{array}{l} A_{j} \colon \text{core tensor} \\ U_{i_{\kappa}j_{\kappa}}^{(\kappa)} = \langle \chi_{i_{\kappa}}^{(\kappa)} | \varphi_{j_{\kappa}}^{(\kappa)} \rangle \text{ representation of SPFs in the primitive basis} \\ \varphi_{j_{\kappa}}^{(\kappa)} \colon \text{single-particle functions (SPFs)} \\ \chi_{i_{\kappa}}^{(\kappa)} \colon \text{primitive basis functions} \end{array}$

¹DVR = Discrete Variable Representation

Bachmayr, Schneider, Uschmajew, Found. Comp. Math. 16, 1423 (2016)

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

MCTDH – Equations of Motion

Coupled system of coefficient equations and low-dimensional non-linear equations for single-particle functions (SPFs) $\varphi^{(\kappa)}$:

coefficients:

 $i\frac{dA_J}{dt} = \sum_L \langle \Phi_J | H | \Phi_L \rangle A_L$ $i\frac{\partial \varphi^{(\kappa)}}{\partial t} = \left(\hat{1} - \hat{P}^{(\kappa)}\right) \left[\rho^{(\kappa)}\right]^{-1} \hat{H}^{(\kappa)} \varphi^{(\kappa)}$

SPFs:

Meyer, Manthe, Cederbaum, CPL 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)

- $\hat{P}^{(\kappa)} = \sum_j | \varphi_j^{(\kappa)} \rangle \langle \varphi_j^{(\kappa)} |$ is the time-dependent projector on the κ th subspace
- $\hat{H}_{ii}^{(\kappa)} = \langle \psi_i^{(\kappa)} | \hat{H} | \psi_i^{(\kappa)} \rangle$ are mean-field Hamiltonian matrix elements
- $\rho_{ij}^{(\kappa)} = \langle \psi_i^{(\kappa)} | \psi_j^{(\kappa)} \rangle$ are reduced density matrix elements in the κ th subspace
- recent approaches to "repair" singularity problem $([
 ho^{(\kappa)}]^{-1})$

Manthe, J. Chem. Phys. 142, 244109 (2015), Wang, Meier, J. Chem. Phys. 148, 124105 (2018),
 Lubich, Appl. Math. Res. Express 2, 311-328 (2015), Kloss, Burghardt, Lubich. J. Chem. Phys., 146, 174107 (2017)

Derivation of MCTDH Equations of Motion: Two Procedures

• standard procedure: construct explicit form of wavefunction variation:

$$\delta \Psi = \sum_J \, \delta A_J \, \Phi_J + \sum_\kappa \left(\sum_{l_\kappa} \, \delta \, arphi_{l_\kappa}^{(\kappa)} \Psi_{l_\kappa}^{(\kappa)}
ight)$$

and insert independent variations δA_J and $\delta \varphi_{l_{\kappa}}^{(\kappa)}$ into the DFVP:

$$\langle \delta \Psi | \hat{H} - i \frac{\partial}{\partial t} | \Psi \rangle = 0$$

alternative procedure: obtain tangent-space projector

$$\mathscr{P}(\Psi) = \mathscr{P}_0(\Psi) + \sum_{\kappa} \mathscr{P}_{\kappa}(\Psi)$$

and insert component projectors into the projected TDSE:

$$i \frac{\partial}{\partial t} \left| \Psi \right\rangle = \mathscr{P}(\Psi) \hat{H} \left| \Psi \right\rangle$$

C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zürich (2008)

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Tangent Space Projector for MCTDH

$$\mathscr{P}(\Psi) = \mathscr{P}_0(\Psi) + \sum_{\kappa} \mathscr{P}_{\kappa}(\Psi)$$

$$\begin{split} \mathscr{P}_{0}(\Psi) &= \sum_{J} |\Phi_{J}\rangle \langle \Phi_{J}| \quad \text{and} \quad \mathscr{P}_{\kappa}(\Psi) = \left(1 - P^{(\kappa)}\right) \otimes \bar{P}^{(\kappa)} \\ P^{(\kappa)} &= \sum_{i} |\varphi_{i}^{(\kappa)}\rangle \langle \varphi_{i}^{(\kappa)}|: \text{ SPF subspace projector} \end{split}$$

 $\bar{P}^{(\kappa)} = \sum_{l,l'} |\Psi_l^{(\kappa)}\rangle \left(\rho^{(\kappa)}\right)_{l'l}^{-1} \langle \Psi_{l'}^{(\kappa)}|: \text{ SHF projector (noting non-orthogonality!)}$

Koch, Lubich, SIAM J. Matrix Anal. Appl. 31, 2360 (2010), Kloss, Burghardt, Lubich. J. Chem. Phys., 146, 174107 (2017) Bonfanti, Burghardt, Chem. Phys., in press (2018), arXiv:1802.01058 [physics.chem-ph]

Advantage of using this route: new concepts of how to split \mathscr{P}

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

New Projector Splitting Scheme for MCTDH

concept: split subspace projectors $\mathscr{P}_{\kappa} = \mathscr{P}^+_{\kappa}(\Psi) - \mathscr{P}^-_{\kappa}(\Psi)$ such that:

$$\mathscr{P}(\Psi) = \mathscr{P}_0(\Psi) + \sum_{\kappa} \left(\mathscr{P}^+_{\kappa}(\Psi) - \mathscr{P}^-_{\kappa}(\Psi) \right)$$

where

$$\mathscr{P}_0(\Psi) = \sum_J |\Phi_J\rangle \langle \Phi_J| \quad \text{ and } \quad \mathscr{P}^+_\kappa(\Psi) = \bar{P}^{(\kappa)} \quad \mathscr{P}^-_\kappa(\Psi) = P^{(\kappa)} \otimes \bar{P}^{(\kappa)}$$

 $P^{(\kappa)} = \sum_{i} | \varphi_{i}^{(\kappa)} \rangle \langle \varphi_{i}^{(\kappa)} |$: SPF subspace projector

$$\bar{P}^{(\kappa)} = \sum_{l,l'} |\Psi_{l'}^{(\kappa)}\rangle (\rho^{(\kappa)})_{l'l}^{-1} \langle \Psi_{l}^{(\kappa)}| = \sum_{l} |\tilde{\Psi}_{l}^{(\kappa)}\rangle \langle \tilde{\Psi}_{l}^{(\kappa)}|$$

- use a complementary representation where the SHFs are orthogonal
- two sets of coupled EoMs for SPFs where $[\rho^{(\kappa)}]^{-1}$ does not appear!

Lubich, Appl. Math. Res. eXpress 2015, 311 (2015), Kloss, Burghardt, Lubich, J. Chem. Phys., 146, 174107 (2017) Bonfanti, Burghardt, Chem. Phys., in press (2018), arXiv:1802.01058 [physics.chem-ph]

Implementation of Projector Splitting Integrator for MCTDH

Lubich, Appl. Math. Res. eXpress 2015, 311 (2015), Kloss, Burghardt, Lubich, J. Chem. Phys. 146, 174107 (2017).

MCTDH equations in tensor notation:

$$i\dot{C} = \sum_{q} a_{q} C \times_{n=1}^{d} \mathbf{H}_{spf,n}^{q}$$
(1)
$$\dot{\mathbf{U}}_{n} = \sum_{q} a_{q} (\mathbf{I} - \mathbf{P}_{n}) \mathbf{H}_{prim,n}^{q} \mathbf{U}_{n} \mathcal{H}_{n}^{q} \boldsymbol{\rho}_{n}^{-1}$$
(2)

To obtain Lubich's projector-splitting scheme, replace (2) with the following, where $\mathbf{K}_n = \mathbf{U}_n \mathbf{S}_n$ can be understood as modified SPFs that are *not* orthonormal – while the single-hole functions (SHFs) have been orthogonalized,

$$i\dot{\mathbf{K}}_{n} = \sum_{q} a_{q} \mathbf{H}_{prim,n}^{q} \mathbf{U}_{n} \mathbf{S}_{n} \mathcal{H}_{n}^{q}$$
$$i\dot{\mathbf{S}}_{n} = \sum_{q} a_{q} \mathbf{H}_{SPF,n}^{q} \mathbf{S}_{n} \mathcal{\tilde{H}}_{n}^{q}$$

• The inverse of the density matrix no longer appears!

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Gaussian-based MCTDH (G-MCTDH)

Burghardt, Meyer, Cederbaum, J. Chem. Phys. 111, 2927 (1999)

 $\Psi(r,t) = \sum_{j} A_j(t) g_j(r,t) \text{ (vMCG)}$

Burghardt et al., JCP 119, 5364 (2003), 129, 174104 (2008)

variational Multi-Configurational Gaussians

Worth, Burghardt, Chem. Phys. Lett. 368, 502 (2003), Richings et al., Int. Rev. Phys. Chem., 34, 265 (2015)

- key precursors: Heller's Frozen and Thawed GWPs (1975, 1981 etc.)
- variational GWPs: Metiu & co (1985), Martinazzo & co (2007): LCSA (Local Coherent State Approximation)
- non-variational GWPs: Martínez & co (1996): FMS (Full Multiple Spawning); Shalashilin & co (2000): CCS (Coupled Coherent States); Batista & co (2003): MP/SOFT (Matching Pursuit)

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

G-MCTDH = Quantum-Semiclassical MCTDH

$$\begin{split} \Psi(r,t) &= \sum_{J} A_{J}(t) \ \Phi_{J}(r,t) \\ &\text{with } \Phi_{J}(r,t) = \prod_{\kappa=1}^{M} \varphi_{j_{\kappa}}^{(\kappa)}(r_{\kappa},t) \end{split}$$

Multi-Configuration Time-Dependent Hartree Meyer et al., CPL 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)

Gaussian-based hybrid method: G-MCTDH

$$\Phi_J(r,t) = \prod_{\kappa=1}^{M} \varphi_{j_{\kappa}}^{(\kappa)}(r_{\kappa},t) \quad \prod_{\kappa=M+1}^{P} g_{j_{\kappa}}^{(\kappa)}(r_{\kappa},t)$$

primary nodes secondary modes

Burghardt, Meyer, Cederbaum, J. Chem. Phys. **111**, 2927 (1999) Burghardt, Giri, Worth J. Chem. Phys. **129**, 174104 (2008) Gaussian-based MCTDH (G-MCTDH) Two-Layer/Multi-Layer G-MCTDH Quantum-Semiclassical Limit of G-MCTDH Quantum-Langevin Dynamics & Density Matrices

Variational Dynamics

$$\Psi(r_1,\ldots,r_P,t) = \sum_{j_1}\ldots\sum_{j_P} A_{j_1\ldots j_P}(t) \prod_{\kappa=1}^M \varphi_{j_\kappa}^{(\kappa)}(r_\kappa,t) \prod_{\kappa=M+1}^P g_{j_\kappa}^{(\kappa)}(r_\kappa,t)$$

$$g_j^{(\kappa)}(r_{\kappa},t) = \exp\left[r_{\kappa} \cdot a_j^{(\kappa)}(t)r_{\kappa} + \xi_j^{(\kappa)}(t) \cdot r_{\kappa} + \eta_j^{(\kappa)}(t)\right]$$

multidimensional Gaussian functions:

- "thawed" (TG) vs. "frozen" (FG)
- quasi-classical motion for $\xi_j = -2a_jq_j + ip_j$
- analytical integrals

Dirac-Frenkel variational principle:

 $\langle \delta \Psi | H - i \frac{\partial}{\partial t} | \Psi \rangle = 0 \quad \longrightarrow \quad \text{dynamical equations for } \Lambda_j^{(\kappa)} = (a_j^{(\kappa)}, \xi_j^{(\kappa)}, \eta_j^{(\kappa)})$

• up to 50-100 modes – exponential scaling problem ($\sim f N^{f+1}$) is alleviated

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Dynamical Equations

Burghardt, Meyer, Cederbaum, JCP 111, 2927 (1999)

coefficients:

$$iS\dot{A} = \begin{bmatrix} H - i\tau \end{bmatrix} A$$
$$i\dot{\varphi}^{(\kappa)} = \left(\hat{1} - \hat{P}^{(\kappa)}\right) \left[\rho^{(\kappa)}\right]^{-1} \hat{H}^{(\kappa)} \varphi^{(\kappa)}$$
$$iC^{(\kappa)} \dot{\Lambda}^{(\kappa)} = Y^{(\kappa)}$$

GWPs (secondary modes):

SPFs (primary modes):

$$\begin{split} S_{jl}^{(\kappa)} &= \langle g_{j}^{(\kappa)} | g_{l}^{(\kappa)} \rangle \quad ; \quad \tau_{jl}^{(\kappa)} = \langle g_{j}^{(\kappa)} | \frac{\partial g_{l}^{(\kappa)}}{\partial t} \rangle \\ C_{j\alpha,l\beta}^{(\kappa)} &= \rho_{jl}^{(\kappa)} \langle \frac{\partial g_{j}^{(\kappa)}}{\partial \lambda_{j\alpha}^{(\kappa)}} \Big| \left(\hat{1} - \hat{P}^{(\kappa)} \right) \Big| \frac{\partial g_{l}^{(\kappa)}}{\partial \lambda_{l\beta}^{(\kappa)}} \rangle \quad ; \quad Y_{j\alpha}^{(\kappa)} &= \sum_{l} \langle \frac{\partial g_{j}^{(\kappa)}}{\partial \lambda_{j\alpha}^{(\kappa)}} \Big| \left(\hat{1} - \hat{P}^{(\kappa)} \right) \hat{H}_{jl}^{(\kappa)} \Big| g_{l}^{(\kappa)} \rangle \end{split}$$

- evolution under multiconfigurational mean-field Hamiltonian
- coupled, variational equations for Gaussian parameters
- correlations between primary vs. secondary subspace
- analogous equations for density matrix evolution Burghardt, Meyer, Cederbaum, JCP 111, 2927 (1999)

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Symplectic Structure of "VP Mechanics"

• variational formulation via action integral: $\delta \mathscr{S} = \delta \int dt \mathscr{L} = 0$

classical mechanics

$$\mathscr{L} = \sum_{k} p_k \dot{q}_k - H(q_k, p_k)$$

$$\mathscr{L} = \sum_{lpha=1} S^{(0lpha)} \dot{\lambda_{lpha}} - \langle \Psi | H | \Psi
angle$$

identify:
$$\tilde{p}_{\alpha} = S^{(0\alpha)} = i \langle \Psi | \frac{\partial \Psi}{\partial \lambda_{\alpha}} \rangle$$

$$\dot{q}_k = rac{\partial H}{\partial p_k}$$

 $\dot{p}_k = -rac{\partial H}{\partial q_k}$

$$egin{aligned} \dot{\lambda}_{lpha} &= rac{\partial \langle H
angle}{\partial ilde{p}_{lpha}} \ &= \sum_{eta} rac{\partial \langle H
angle}{\partial \lambda_{eta}} rac{\partial \langle H
angle}{\partial ilde{\lambda}_{eta}} rac{\partial \langle A
angle}{\partial ilde{p}_{lpha}} \ &= \sum_{eta} rac{\partial \langle H
angle}{\partial \lambda_{eta}} \left(C^{-1}
ight)_{lphaeta} \end{aligned}$$

Kramer, Saraceno, Geometry of the time-dependent variational principle, Springer (1981), Shalashilin, Burghardt, JCP 129, 084104 (2008)

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Classical Evolution as a Special Case

$$q_j, p_j \qquad \longleftarrow \qquad g_j(r_{\kappa}) = N_j \exp\left[(r_{\kappa} - q_j) \cdot a_j(r_{\kappa} - q_j) + ip_j \cdot (r_{\kappa} - q_j)\right]$$

where we used $\xi_j = -2a_jq_j + ip_j$

We have classical motion of $(q_j(t), p_j(t))$ if

- single Gaussian (cf. Heller)
- superposition of TGs / single-surface + harmonic potential: "decoupling effect" (Metiu & co, JCP (1985))

or

• if the classical limit is reached ($\lambda_{dB} \ll L$), such that G-MCTDH becomes a true mixed quantum-classical method for $\psi^{\varepsilon} = \sum_{jl} A_{jl} e^{iS_l/\varepsilon} \varphi_j g_l^{\varepsilon}$, see below Römer, Burghardt, Mol. Phys. 111, 3618 (2013)

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Implementation Details

- frozen Gaussians (FGs) almost exclusively used due to numerical robustness
- however, thawed Gaussians (TGs) were successfully employed for system-bath problems [Burghardt, Nest, Worth (2003)]
- various conventions possible for complex GWP phase η_j: here, normalized GWPs, imaginary part of phase set to zero
- local harmonic approximation (LHA) or higher-order local expansion

- split off separable part of evolution: $i\dot{\Lambda}^{(\kappa)} = X_0^{(\kappa)} + (C^{(\kappa)})^{-1}Y_{\text{corr}}^{(\kappa)}$
- Constant Mean Field (CMF) integrator used, by switching to an orthogonalized representation to match standard A coeff. propagation
- singularities of the *S* and *C* matrices (linear dependencies): standard regularization scheme
- Wigner sampling or single GWP as initial condition
- dynamic GWP allocation (G. Worth)

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

Example: System-Bath Correlations and Decoherence Thawed Gaussians (TGs)

QuSeT18 – Quantum and Semiclassical Trajectories Variational Gaussian Wavepacket Dynamics

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

G-MCTDH: Morse Oscillator + 60-Mode Harmonic Bath

Thawed Gaussians (TGs)

• typical configuration: ([5]_{core}, [3,3,3,4,4,3,3,3]_{bath})

Burghardt, Nest, Worth, JCP 19, 5364 (2003)

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

G-MCTDH Calculation for S_2/S_1 Coln in pyrazine Hybrid calculation for 4+20 modes (FGs)

absorption spectrum

autocorrelation function

dotted red line: experiment Yamazaki et al., Faraday Discuss. **75**, 395 (1983)

full black line: G-MCTDH Burghardt, Giri, Worth, JCP 129, 174104 (2008) state 1: ([19,10]_{core}, [18,10,18,10]_{bath}) state 2: ([12,7]_{core}, [10,8,12,10]_{bath}) 150 fs / 1644 MB / 1250 hrs / 6962400 config's MCTDH: 150 fs / 2614 MB / 279 hrs / 10966760 cf's

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

vMCG Calculation for Herzberg-Teller Spectrum of Formaldehyde (6 dof's) (FGs)

- up to 108 GWPs
- Local Cubic Approximation
- dominant modes: out-ofplane-bending, CO stretch
- vMCG outperforms HK-SCIVR (10⁵ traj.)

Bonfanti, Petersen, Eisenbrandt, Burghardt, Pollak, JCTC, submitted (2018).

Stochastic Schrödinger Equation in GWP/Mean-Field Setting

Burghardt, Meyer, Cederbaum, J. Chem. Phys. 111, 2927 (1999), see also: Peskin, Steinberg, J. Chem. Phys. 109, 704 (1999)

For example, consider a vMCG wavefunction + Hartree bath:

$$\Psi(r_1,\ldots,r_N,\{q_n\},t) = \left[\sum_j A_j(t) g_j(r_1,\ldots,r_N,\Lambda(t))\right] \prod_{n=1}^{\infty} \chi^{(n)}(q_n,t)$$

Take a bath acting upon the *k*th DOF of the GWP particle: $\hat{H}_{SB} = -\sum_{n} c_{kn} \hat{r}_k \hat{q}_n$, resulting in the mean-field Hamiltonian

$$\langle H \rangle_{jl}(t) = -\rho_{jl}(t) \hat{r}_k \sum_n c_{kn} \langle \chi^{(n)}(t) | \hat{q}_n | \chi^{(n)}(t) \rangle = -\rho_{jl}(t) \hat{r}_k \sum_n c_{kn} Q_n(t)$$

Now use: $\lim_{n\to\infty} (\sum_n c_n Q_n(t)) = f(t) - \int_0^t dt' \zeta(t-t') \dot{Q}_k(t') + \zeta(0) Q_k(t)$ In the simplest case, we obtain a Langevin type equation for the GWPs:

$$\begin{aligned} \dot{q}_{j,k} &= \left. \frac{p_{j,k}}{m} \\ \dot{p}_{j,k} &= \left. -\frac{\partial V_{\text{sys}}}{\partial r_k} \right|_{r_k = q_k} + f(t) - \gamma \dot{Q}_k(t) + \zeta(0) \dot{Q}_k(0) \end{aligned}$$

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

GWP/Langevin Dynamics: 2D Tunneling

- vMCG calculations with 20 two-dimensional GWPs (not entirely converged)
- Langevin dissipation acting on harmonic coordinate
- increasing friction destroys resonant dynamics between the two modes
- general scheme: Langevin closure of effective-mode chains
- cheap and physically intuitive way of implementing dissipation

Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

GWP/Langevin Dynamics: 2D Tunneling

tunnel coordinate
$$\nleftrightarrow$$
 $J(\omega) = \sum_{n} \frac{c_{n}^{2}}{\omega_{n}} \delta(\omega - \omega_{n}) = \frac{2\gamma\omega D^{2}}{(\Omega^{2} - \omega^{2})^{2} + 4\gamma^{2}\omega^{2}}$
 \downarrow
tunnel coordinate \bigstar effective mode $\hat{X}_{1} \nleftrightarrow J^{\text{residual}}(\omega) = 2\gamma\omega$

•
$$\hat{H}_{SB} + \hat{H}_B = \hat{s} \sum_i c_n \hat{x}_n + \hat{H}_B \longrightarrow D\hat{s} \hat{X}_1$$
 - residual bath

- "Brownian oscillator" picture: 1 effective mode + Ohmic bath
- here, effective mode is chosen resonant with the tunneling frequency
- treat residual Ohmic bath by Langevin dynamics
- 2D system with damping of effective Brownian oscillator mode
- replaces discretized residual bath (or full discretization of SD)

MCTDH & G-MCTDH for Density Operators

- EOMs from variational principle for densities: $\langle\langle\delta
 ho|L\!-\!i\partial_t|
 ho
 angle=0$
- multiconfigurational density operators of two types:
 - density operators of type I:

$$\rho(x_1,\ldots,x_N;x_1',\ldots,x_N')=\sum_{\tau_1}\ldots\sum_{\tau_N}B_{\tau_1\ldots\tau_N}(t)\prod_{\kappa=1}^N\sigma_{\tau_\kappa}^{(\kappa)}(x_\kappa,x_\kappa',t)$$

• density operators of type II:

$$\rho(x_1, \dots, x_N; x'_1, \dots, x'_N) = \sum_{j_1} \dots \sum_{j_N} \sum_{l_1} \dots \sum_{l_N} B_{j_1, \dots, j_N; l_1, \dots, l_N}(t)$$
$$\times \prod_{\kappa=1}^N \varphi_{j_\kappa}^{(\kappa)}(x_\kappa, t) \varphi_{l_\kappa}^{(\kappa)*}(x'_\kappa, t)$$

Raab, Burghardt, Meyer, J. Chem. Phys. 111, 8759 (1999), Raab, Meyer, J. Chem. Phys. 112, 10718 (2000)

• employ, e.g., in conjunction with Markovian MEs (Lindblad, Caldeira-Leggett)

G-MCTDH for Density Operators

Burghardt, Meyer, Cederbaum, J. Chem. Phys. 111, 2927 (1999)

- density operators of type I: $\rho(\mathbf{r};\mathbf{r}') = \sum_{\tau_1} \dots \sum_{\tau_N} B_{\tau_1 \dots \tau_N}(t) \prod_{\kappa=1}^N \mathscr{G}_{\tau_\kappa}^{(\kappa)}(\mathbf{r}_\kappa,\mathbf{r}'_\kappa,t)$ $\mathscr{G}_{\tau}^{(\kappa)}(\mathbf{r},\mathbf{r}',t) = \exp\left(\mathbf{r} \cdot \boldsymbol{\alpha}_{\tau}(t) \cdot \mathbf{r} + \mathbf{r}' \cdot \boldsymbol{\alpha}'_{\tau}(t) \cdot \mathbf{r}' + \boldsymbol{\beta}_{\tau}(t) \cdot \mathbf{r} + \boldsymbol{\beta}'_{\tau}(t) \cdot \mathbf{r}' + \mathbf{r} \cdot \mathbf{v}'_{\tau}(t) \cdot \mathbf{r}' + \boldsymbol{\theta}(t)\right)$
 - includes thermal GWPs, e.g., as initial condition:

$$\mathscr{G}_{\tau}^{(\kappa)}(r,r',t=0) = \exp\left(-\frac{m\omega}{2\sinh(\omega/kT)}\left[(r^2+r'^2)\cosh(\omega/kT) - 2rr'\right]\right)$$

• density operators of type II: adjoint pairs of component densities

$$\mathscr{G}_{jl}^{(\kappa)}(\boldsymbol{r},\boldsymbol{r}',t) = g_j^{(\kappa)}(\boldsymbol{r})g_l^{(\kappa)*}(\boldsymbol{r}') = \mathscr{G}_{lj}^{(\kappa)*}(\boldsymbol{r},\boldsymbol{r}',t)$$

Two-Layer Extension – Concept Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Topics

Gaussian-based MCTDH (G-MCTDH) Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCC GWP/Langevin Dynamics & Density Matrices

2 Two-Layer/Multi-Layer G-MCTDH Two-Layer Extension – Concept Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Quantum-Classical Limit of G-MCTDH Semiclassically Scaled G-MCTDH Quantum-Classical Dynamics Variational Multiconfigurational Ehrenfest Dynamics

Two-Layer G-MCTDH – Motivation

- original G-MCTDH concept: combined, correlated TG modes (correlations through off-diagonal elements of the width matrix)
- in practice: G-MCTDH or vMCG using combined FG modes
 - factorizable, uncorrelated FG configurations
 - despite the separability, the C matrix is not block-diagonal
 - hence, expensive inversion step $\propto (\tilde{n}d)^3$

Two-Layer (2L)-G-MCTDH Scheme

Römer, Ruckenbauer, Burghardt, J. Chem. Phys. 138, 064106 (2013)

$$\Psi(r,t) = \sum_J A_J(t) \Phi_J(r,t) = \sum_J A_J(t) \prod_{\kappa=1}^M \varphi_{j_\kappa}^{(\kappa)}(r_\kappa,t)$$

where the single-particle functions (SPFs) $\varphi_{j_{\kappa}}^{(\kappa)}$ are now built as superpositions of Frozen Gaussian (FG) configurations,

- hierarchical Tucker format
- intra-SPF correlations are carried by B coefficients
- GWP parameter dynamics in small (κ,μ) subspaces
- first-layer SPFs can be chosen to be orthogonal: $\langle \varphi_i^{(\kappa)}(t) | \varphi_{i'}^{(\kappa)}(t) \rangle = \delta_{jj'}$

Two-Layer G-MCTDH – Equations of Motion

1st layer coefficients:

$$i\dot{A} = HA$$

2nd layer coefficients:

GWPs (2nd layer):

$$iS^{(\kappa)}\dot{B}^{(\kappa)} = \left[\tilde{H}^{(\kappa)} - i\tilde{\tau}^{(\kappa)}\right]B^{(\kappa)}$$

 $iC^{(\kappa,\mu)}\dot{\Lambda}^{(\kappa,\mu)} = Y^{(\kappa,\mu)}$

where
$$\tilde{S}_{jL,j'L'}^{(\kappa)} = \delta_{jj'} \langle G_L^{(\kappa)} | G_{L'}^{(\kappa)} \rangle$$
, $\tilde{\tau}_{jL,j'L'}^{(\kappa)} = \delta_{jj'} \langle G_L^{(\kappa)} | \partial_l G_{L'}^{(\kappa)} \rangle$
and the 1st layer mean field term: $\tilde{H}_{jL,j'L'}^{(\kappa)} = \langle G_L^{(\kappa)} | (1 - \hat{P}^{(\kappa)}) \left[(\rho^{(\kappa)})^{-1} \hat{H}^{(\kappa)} \right]_{jj'} G_{L'}^{(\kappa)} \rangle$
and for the parameter equations: $C_{j\alpha,l\beta}^{(\kappa,\mu)} = \rho_{jl}^{(\kappa,\mu)} \langle \partial_{\alpha} g_j^{(\kappa,\mu)} | (\hat{1} - \hat{P}^{(\kappa,\mu)}) | \partial_{\beta} g_l^{(\kappa,\mu)} \rangle$
as well as $Y_{j\alpha}^{(\kappa,\mu)} = \sum_l \langle \partial_{\alpha} g_j^{(\kappa,\mu)} | (\hat{1} - \hat{P}^{(\kappa,\mu)}) \hat{H}_{jl}^{(\kappa,\mu)} | g_l^{(\kappa,\mu)} \rangle$

Römer, Ruckenbauer, Burghardt, J. Chem. Phys. 138, 064106 (2013)

Two-Layer Extension – Concept Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Two-Layer G-MCTDH – Scaling

effort ^-MCTDH $\sim m f^2 n^{f+1} + f(\tilde{d}n)^3$ calculation of mean fields + C matrix inversion

effort^{2L-G-MCTDH} $\sim m_1 f_1^2 n_1^{f_1+1} + m_1 m_2 f_1 f_2 n_1 n_2^{f_2+1} (f_2 + n_1) + f_1 f_2 (d_2 n_2)^3$ calculation of 1st and 2nd-layer mean fields + C matrix inversion

Gaussian-based MCTDH (G-MCTDH) Two-Layer Extension – Concept Equations of Motion Quantum-Classical Limit of G-MCTDH Applications: Energy Transport in a Molecular Chain, Spin-Boson System

2L-G-MCTDH for Coupled Electronic States: Three Variants

3.7

- single-set: shared basis

$$\begin{split} \Psi_{S}(r,t) &= \sum_{J,s} A_{Js}(t) \Phi_{J}(r,t) |s\rangle &= \sum_{J,s} A_{Js}(t) \prod_{\kappa=1}^{N} \varphi_{j_{\kappa}}^{(\kappa)}(r_{\kappa},t) |s\rangle \\ \varphi_{j_{\kappa}}^{(\kappa)}(r_{\kappa},t) &= \sum_{L} B_{j,L}^{(\kappa)}(t) G_{L}^{(\kappa)}(r_{\kappa},t) = \sum_{L} B_{j,L}^{(\kappa)}(t) \prod_{\mu} g_{l_{\mu}}^{(\kappa,\mu)}(r_{\kappa_{\mu}},t) \end{split}$$

- multi-set: state-specific basis

$$\begin{split} \Psi_{M}(r,t) &= \sum_{J,s} A_{J}^{(s)}(t) \Phi_{J}^{(s)}(r,t) | s \rangle \quad = \quad \sum_{J,s} A_{J}^{(s)}(t) \prod_{\kappa=1}^{N} \varphi_{j_{\kappa}}^{(\kappa,s)}(r_{\kappa},t) | s \rangle \\ \varphi_{j_{\kappa}}^{(\kappa,s)}(r_{\kappa},t) &= \quad \sum_{L} B_{J,L}^{(\kappa,s)}(t) G_{L}^{(\kappa,s)}(r_{\kappa},t) = \sum_{L} B_{J,L}^{(\kappa,s)}(t) \prod_{\mu} g_{l_{\mu}}^{(\kappa,\mu,s)}(r_{\kappa_{\mu}},t) \end{split}$$

- hybrid-multi/single set \equiv hybrid-set: state-specific but shared 2nd-layer basis

$$\begin{split} \Psi_{H}(r,t) &= \sum_{J,s} A_{J}^{(s)}(t) \Phi_{J}^{(s)}(r,t) | s \rangle \quad = \quad \sum_{J,s} A_{J}^{(s)}(t) \prod_{\kappa=1}^{N} \varphi_{j_{\kappa}}^{(\kappa,s)}(r_{\kappa},t) | s \rangle \\ \varphi_{j_{\kappa}}^{(\kappa,s)}(r_{\kappa},t) &= \quad \sum_{L} B_{J,L}^{(\kappa,s)}(t) G_{L}^{(\kappa)}(r_{\kappa},t) = \sum_{L} B_{J,L}^{(\kappa,s)}(t) \prod_{\mu} g_{l_{\mu}}^{(\kappa,\mu)}(r_{\kappa_{\mu}},t) \end{split}$$

Two-Layer Extension – Concept Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Model System: Intramolecular Vibrational Redistribution (IVR)

Schade, Hamm, J. Chem. Phys. 131, 044511 (2009), Eisenbrandt, Ruckenbauer, Römer, Burghardt, to be submitted (2018)

- low-frequency transporting modes + high-frequency local modes
- transporting/local modes communicate via Fermi resonances
- IVR efficiency is controlled by parameters k and Δ
- consider regime of "ballistic" transport along the chain
- $i = 1, \dots, f_1$ 1st-layer modes , $j = 1, \dots, f_2$ 2nd-layer modes/site

Two-Layer Extension – Concept Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Model System: PES Cuts

intra-site PES cut (q_{11}, q_{12})

PES cut for transporting modes (q_{11}, q_{21})

Two-Layer Extension – Concept Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Results & Benchmarks

QuSeT18 - Quantum and Semiclassical Trajectories

Variational Gaussian Wavepacket Dynamics

Benchmarks for 2-State Donor-Acceptor Model

$$\hat{H}=\hat{H}_0+\hat{H}_R+\hat{H}_B$$

 \hat{H}_0 : electronic part \hat{H}_R : inter-fragment coordinate part \hat{H}_B : phonon bath part

$$\begin{aligned} \hat{H}_{0} &= \Delta_{\text{XT}-\text{CT}} |\text{CT}\rangle \langle \text{CT}| + \gamma \big(|\text{XT}\rangle \langle \text{CT}| + |\text{CT}\rangle \langle \text{XT}| \big) \\ \hat{H}_{R} &= \frac{\omega_{R}}{2} (\hat{R}^{2} + \hat{P}^{2}) + \kappa_{R} \hat{R} |\text{CT}\rangle \langle \text{CT}| \\ &+ \gamma_{R} \hat{R} \left(|\text{XT}\rangle \langle \text{CT}| + |\text{CT}\rangle \langle \text{XT}| \right) \end{aligned}$$

$$\hat{H}_B = \sum_{i=1}^N \frac{\omega_i}{2} (\hat{x}_i^2 + \hat{p}_i^2) + \sum_{i=1}^N \kappa_i x_i |\text{CT}\rangle \langle \text{CT}| + \sum_{i=1}^N \frac{\kappa_i^2}{2\omega_i}$$

Tamura, Martinazzo, Ruckenbauer, Burghardt, J. Chem. Phys., 137, 22A540 (2012)

¢

 ΔE

Gaussian-based MCTDH (G-MCTDH) Two-Layer Multi-Layer G-MCTDH Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Ultrafast Coherent Transfer Dynamics (MCTDH/60 Modes)

• experiment: ultrafast ET (\sim 50 fs), oscillatory features [Brabec et al., CPL (2001)]) confirmed by recent pump-probe experiments by Lienau group [Science (2014)])

Two-Laver Extension – Concept Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Benchmarks – 41D Spin-Boson System

Frozen Gaussians (FGs)

- 2 el. states. 1 subsystem mode, 40 bath modes
- qualitative of "cheap" calculations
- ۰ memory requirements favorable

 vMCG very expensive even for few config's

	calc. type	mode combination	# configs	memory	CPU time	C inversion
				[mb]	[hh:mm]	avg/tot time
1	MCTDH	[6,8],[6,8],[3,5],[2,3]	143616	754	1:36	-
		[2,2],[2,2],[2,2],[2,2],[6,8]				-
2	vMCG	[2,2]	4	2	0:47	5.10 ms
	2,2					0:03:60
3	vMCG	[6,6]	12	15	7:10	136.38 ms
	6,6					1:29:18
4	vMCG	[12,12]	24	55	47:56	1758.71 ms
	12,12					23:21:38
1 vitting 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0						

agreement even

Two-Layer Extension – Concept Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Benchmarks – 41D Spin-Boson System

Frozen Gaussians (FGs)

 different mode combinations and #'s of GWP config's

• C inversion in smaller subspaces

- all G-MCTDH calculations have reasonable timings
- memory requirements favorable

	calc. type	mode combination	# configs	memory	CPU time	C inversion
				[mb]	[hh:mm]	avg/tot time
1	MCTDH	[6,8],[6,8],[3,5],[2,3]	143616	754	1:36	-
		[2,2],[2,2],[2,2],[2,2],[6,8]				-
2	G-MCTDH	[6,8],[6,8],[3,5],[2,3]	143616	28	0:12	0.21 ms
	hybrid	[2,2],[2,2],[2,2],[2,2],[6,8]				0:01:48
3	G-MCTDH	[8,10],[8,10],[5,7],[4,5]	2890080	521	3:56	7.65 ms
	hybrid	[3,3],[3,3],[3,3],[3,3],[6,8]				0:12:03
4	G-MCTDH	[6,8],[6,8],[3,5],[2,3]	143616	28	0:26	0.19 ms
	all-GWP	[2,2],[2,2],[2,2],[2,2],[6,8]				0:06:13
$1 \\ with the second second$						

Results & Benchmarks: Spin-Boson System

calc type	# L1 modes	# L1 SPFs	# L2 modes	# L2 SPFs	timing [s]
small	6	[4,4,4,4,4,7]	[4,4,4,4,4,1]	[3,3,3,3,3,7]	[8252]
medium	6	[6,6,5,5,5,7]	[4,4,4,4,4,1]	[5,5,5,5,5,8]	[122636]
large	6	[7,7,8,8,7,8]	[4,4,4,4,4]	[5,6,6,7,6,9]	[286980]

Eisenbrandt, Ruckenbauer, Römer, Burghardt, to be submitted (2018)

- single-set calculations for rediscretized SDs for 40 / 100 modes
- convergence properties are similar for single(S)/hybrid(H)/multi(M)-set

Implementation & Scaling

- in-house code (M. Ruckenbauer, P. Eisenbrandt)
- general polynomial potentials
- Hamiltonian given as sum-over-products
- initial condition: shell-like spatial distribution (here, initially unoccupied GWPs narrower than central GWP)
- conventional regularization of S and C matrices
- ABM integrator (time step typically ${\sim}10^{-2}~\text{fs})$
- scaling in good agreement with theory
- NB: joint standard G-MCTDH/vMCG code with G. A. Worth now available within QUANTICS package at http://ccpforge.cse.rl.ac.uk/.

Gaussian-based MCTDH (G-MCTDH) Two-Layer Multi-Layer G-MCTDH Equations of Motion Quantum-Classical Limit of G-MCTDH Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Multi-Layer Form

$$\Psi(t) = \sum_{J} A_{J}^{[1]}(t) \Phi_{J}^{[1]}(t) := \sum_{J} A_{J}^{[1]}(t) \prod_{\kappa_{1}=1}^{f^{[1]}} \chi_{j_{\kappa_{1}}}^{[1](\kappa_{1})}(t)$$

with the spf's of the first M-1 layers ($m \in \{2,3,\ldots,M\}$),

$$\chi_{j}^{[m-1](\mu_{m}-1)}(t) = \sum_{J} A_{j,J}^{[m](\mu_{m}-1)}(t) \Phi_{J}^{[m](\mu_{m}-1)}(t) = \sum_{J} A_{j,J}^{[m](\mu_{m}-1)}(t) \prod_{\kappa_{m}=1}^{f_{\mu_{m-1}}^{[m]}} \chi_{j_{\kappa_{m}}}^{[m]}(t)$$

and the final (Mth) layer composed of FG's,

$$\chi_{j}^{[M](\mu_{M})}(t) = g_{j}^{(\mu_{M})}(\Lambda_{j}^{(\mu_{M})}(t))$$

can be straightforwardly combined with existing ML-MCTDH approaches

Römer, Ruckenbauer, Burghardt, J. Chem. Phys. 138, 064106 (2013)

Semiclassically Scaled G-MCTDH Quantum-Classical Dynamics Variational Multiconfigurational Ehrenfest Dynamics

Topics

Gaussian-based MCTDH (G-MCTDH) Preamble: MCTDH Quantum-Semiclassical MCTDH: G-MCTDH, vMCG GWP/Langevin Dynamics & Density Matrices

2 Two-Layer/Multi-Layer G-MCTDH Two-Layer Extension – Concept Equations of Motion Applications: Energy Transport in a Molecular Chain, Spin-Boson System

Quantum-Classical Limit of G-MCTDH Semiclassically Scaled G-MCTDH Quantum-Classical Dynamics Variational Multiconfigurational Ehrenfest Dynamics

Semiclassically Scaled G-MCTDH Quantum-Classical Dynamics Variational Multiconfigurational Ehrenfest Dynamics

Quantum-Classical Limit of G-MCTDH

Classical Limit as Scaling Limit

• condition for classicality:

 $\lambda_{dB} \ll L$

 λ_{dB} = de Broglie wave length; L = scale of variation of the potential V

- rescale potential: $V^{\varepsilon}(r) := V(\varepsilon r)$ such that $\varepsilon \to 0$ corresponds to the limit of slow variation of V^{ε}
- switch to macroscopic coordinates: $(\tilde{r}, \tilde{t}) = (\varepsilon r, \varepsilon t)$ such that the Schrödinger Equation reads $(\hbar = 1, m = 1)$:

$$i\varepsilon \frac{\partial}{\partial \tilde{t}} \Psi(\tilde{r}, \tilde{t}) = \left[-\frac{\varepsilon^2}{2} \Delta_{\tilde{r}} + V(\tilde{r}) \right] \Psi(\tilde{r}, \tilde{t})$$

Semiclassically Scaled G-MCTDH Quantum-Classical Dynamics Variational Multiconfigurational Ehrenfest Dynamics

Classical-Limit Gaussian Wavepackets

$$g_{\varepsilon,j}(\tilde{r}) = N_{\varepsilon} \exp\left[-\frac{1}{2\varepsilon}(\tilde{r}-q_j) \cdot a(\tilde{r}-q_j) + \frac{i}{\varepsilon}p_j \cdot (\tilde{r}-q_j)\right]$$

- "narrow" wavepackets centered around position and momentum (q_j, p_j) , $\|(\hat{r} - q_j)g_{\varepsilon,j}\| \sim \sqrt{\varepsilon} \qquad \|(\hat{p} - p_j)g_{\varepsilon,j}\| \sim \sqrt{\varepsilon}$
- move along classical trajectories (up to an error of order $\sqrt{\varepsilon}$) $g_{\varepsilon,j}(\tilde{r},\tilde{t}) \sim \exp\left(\frac{i}{\varepsilon}S^{\text{cl}}(\tilde{t})\right)g_{\varepsilon,j}(\tilde{r},q_j^{\text{cl}}(\tilde{t}),p_j^{\text{cl}}(\tilde{t}))$
- in this limit, the Gaussian wavepackets are decoupled from each other

G. Hagedorn, Ann. Inst. H. Poincaré Phys. Théor. 42 (1985), no. 4, 363, G. Hagedorn, Ann. Physics 269 (1998), 77

Mixed Quantum-Classically Evolved Wavefunction

$$\Psi^{qc}(r,t) = \sum_{j_1} \dots \sum_{j_M} \sum_l A^{qc}_{j_1\dots j_M,l} \left(\prod_{\kappa=1}^M \varphi^{(\kappa)}_{j_\kappa}(r_\kappa,t) \right) \exp\left(\frac{i}{\varepsilon} S^{cl}_l \right) g^{(f)}_{\varepsilon,l}(r_f;q^{(f)}_l,p^{(f)}_l)$$

coefficients:

SPFs (primary modes):

classical secondary modes:

$$\begin{split} i\dot{A}_l &= HA_l \\ i\dot{\varphi}^{(\kappa)} &= \left(\hat{1} - \hat{P}^{(\kappa)}\right) \left[\rho^{(\kappa)}\right]^{-1} \hat{H}^{(\kappa)} \varphi^{(\kappa)} \\ \dot{q}_l^{(f)} &= p_l^{(f)} \quad \dot{p}_l^{(f)} = -\nabla_{q_l} H_l^{(f)} \end{split}$$

- the resulting quantum-classical dynamics corresponds to a multiconfigurational Ehrenfest (MCE) approach
- the trajectories are still coupled through the primary-mode mean fields

Römer, Burghardt, Mol. Phys. 111, 3618 (2013)

MCE Nonadiabatic Dynamics (Diabatic Representation)

$$\hat{H} = -\frac{\varepsilon^2}{2} \nabla_r^2 \hat{1} + \hat{V} \qquad \qquad \hat{V}(r) = \begin{pmatrix} V_{11}(r) & V_{12}(r) \\ V_{12}(r) & V_{22}(r) \end{pmatrix}$$

$$|\Psi^{\rm qc}(r,t)\rangle = \sum_{n=1}^{n_{\rm states}} \sum_{l=1}^{n_G} A_{nl}(t) \exp\left(\frac{i}{\varepsilon} S_l^{\rm cl}(t)\right) g_{\varepsilon,l}(r;q_l(t),p_l(t)) |n\rangle \qquad ("single-set")$$

coefficients: $i\dot{A}_l = H(q_l)A_l$ classical modes: $\dot{q}_l = p_l$ $\dot{p}_l = -\nabla_{q_l}\bar{V}_l(q_l)$

with the mean-field potential $\bar{V}_l = \left[\sum_n |A_{nl}|^2\right]^{-1} \sum_n \sum_{n'} A_{nl}^* A_{n'l} \langle n | \hat{V}(r=q_l) | n' \rangle$

- Ψ^{qc} evolves along a superposition of Ehrenfest trajectories
- similarly for adiabatic representation (kinetic energy couplings)

see also Shalashilin, J. Chem. Phys. 130, 244101 (2009), 132, 244111 (2010)

Semiclassically Scaled G-MCTDH Quantum-Classical Dynamics Variational Multiconfigurational Ehrenfest Dynamics

Ehrenfest & Beyond

N. L. Doltsinis, in: Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms NIC Series, Jülich, 10, p. 377 (2002)

• single Ehrenfest trajectory: mean field $\bar{V}(q) = \sum_{n,n'} A_n A_{n'} \langle n | \hat{V}(q) | n' \rangle$

Delos, Thorson, Knudson, Phys. Rev. A 6, 709 (1972) Billing, Chem. Phys. Lett. 100, 535 (1983)

• multiconfigurational Ehrenfest: coherent superposition of trajectories (q_l, p_l) with mean fields

$$\bar{V}_l(q_l) = [\sum_n |A_{nl}|^2]^{-1} \sum_{n,n'} A_{nl}^* A_{n'l} \langle n | \hat{V}(q_l) | n' \rangle$$

Shalashilin, J. Chem. Phys. 130, 244101 (2009), 132, 244111 (2010) Römer, Burghardt, Mol. Phys. 111, 3618 (2013)

• different from statistical Ehrenfest approach

Alonso et al., J. Chem. Phys. 137, 054106 (2012)

MCE-like Dynamics for Non-Scaled GWPs

- important in practice, in view of GWP-based sampling of initial conditions and guaranteeing norm conservation
- two-layer ansatz required to restrict electronic coupling to *l*th subspace:

$$\begin{split} |\Psi^{\rm qc}(r,t)\rangle &= \sum_{l=1}^{n_G} \tilde{A}_l(t) |\Phi_l^{\rm qc}(r,t)\rangle \quad = \quad \sum_{l=1}^{n_G} \tilde{A}_l(t) \exp\left(\frac{i}{\hbar} S_l^{\rm cl}(t)\right) g_l(r;q_l(t),p_l(t)) \left|\chi_l^{\rm (el)}(t)\rangle \right. \\ & \left|\chi_l^{\rm (el)}(t)\rangle \quad = \quad \sum_{n=1}^{n_{\rm states}} B_{nl}(t) |n\rangle \end{split}$$

 \tilde{A} coefficients:

$$iS\dot{\tilde{A}} = (H - i\tau)\tilde{A}$$

B coefficients:

$$i\dot{\boldsymbol{B}}_l = \boldsymbol{H}(q_l)\boldsymbol{B}_l$$

classical modes:

$$p_l = p_l \quad \dot{p}_l = -\nabla_{q_l} \bar{V}_l(q_l)$$

with the mean-field potential

ġ

$$ar{V}_l = \left[\sum_n |B_{nl}|^2
ight]^{-1}\sum_n \sum_{n'} B^*_{nl} B_{n'l} \langle n|\hat{V}(r=q_l)|n'
angle$$

see also Shalashilin, J. Chem. Phys. 132, 244111 (2010)

Semiclassically Scaled G-MCTDH Quantum-Classical Dynamics Variational Multiconfigurational Ehrenfest Dynamics

Multiconfigurational Ehrenfest Dynamics

- 4D 40D spin-boson system
- several 1000 trajectories
- importance sampling over $ho_{
 m Wigner}$
- strong dependence on GWP width

• Multiconfiguration Ehrenfest

• For Comparison: Statistical Ehrenfest

Multiconfigurational Ehrenfest System – Properties

• the quantum-classical wavefunction state carries correlations due to the multiconfigurational wavefunction form,

$$\Psi^{\rm qc}(r,t) = \sum_{J} \sum_{l} A_{J,l}^{\rm qc}(t) \Phi_J(r_{\kappa},t) \exp\left(\frac{i}{\varepsilon} S_l^{\rm cl}\right) g_{\varepsilon,l}^{(f)}(r_f;q_l^{(f)},p_l^{(f)})$$

• the reduced density matrix of the quantum subsystem is in a mixed state,²

$$\rho_{qc}^{sys}(x,x',t) = \operatorname{Tr}_{cl} \left[\Psi_{qc}^{\varepsilon}(x,r,t) \Psi_{qc}^{\varepsilon*}(x',r',t) \right]$$

• statistical ensembles can be constructed as follows:

$$\rho_{qc}^{\varepsilon}(x,r,x',r',t) = \sum_{n} p_{n} \Psi_{qc,n}^{\varepsilon}(x,r,t) \Psi_{qc,n}^{\varepsilon*}(x',r',t)$$

²By contrast, single-trajectory Ehrenfest evolution always yields a pure subsystem state.

Is Multiconfigurational Ehrenfest Dynamics Consistent?

- the properties of the underlying wavefunction state Ψ_{qc} are preserved
- correlations between the quantum and classical subspaces are accounted for
- the dynamics is variational, hence a generalized Poisson bracket structure exists: $i\{\cdot,\cdot\}_{qc} = i\sum_n \{\langle H \rangle, A_n\} + i\sum_l \{\langle H \rangle, \xi_l\}$ where $\langle H \rangle = \langle \Psi_{qc} | \hat{H} | \Psi_{qc} \rangle$

However,

- the single-configurational (standard Ehrenfest) case is not a satisfactory quantum-classical description
- due to the non-linear structure of the equations, a direct comparison with other approaches (e.g., the QC Liouville Equation) is not straightforward

Semiclassically Scaled G-MCTDH Quantum-Classical Dynamics Variational Multiconfigurational Ehrenfest Dynamics

Summary

- G-MCTDH/ML-G-MCTDH/vMCG are useful due to their proximity to classical mechanics, while permitting full quantum convergence
- two-layer (or multi-layer) variant employs correlated FG-based particles; need for sampling strategies when combining with on-the-fly applications
- natural quantum-classical limit of G-MCTDH: multiconfiguration Ehrenfest
- Langevin dynamics from a stochastic Schrödinger equation picture
- next steps: statistical sampling & extension to thermal GWPs; random-phase thermal wavepackets; GWP-based correlation functions (cf. Coughtrie & Tew, JCP 140, 194106 (2014)); GWP calculations for nonlinear optical signals, transport dynamics, multiscale microscopic/mesoscopic dynamics ...

Acknowledgments & Collaborations

Group Frankfurt:

- M. Biswas
- P. Mondal
- D. Rastädter
- R. Binder
- J. Wahl
- P. Eisenbrandt
- M. Polkehn
- M. Huix-Rotllant

Former members:

- S. Römer
- M. Ruckenbauer
- J. Ortiz-Sánchez

Collaborations:

- H. Tamura (Sendai, Japan)
- K. H. Hughes (Bangor, UK)
- R. Martinazzo (Milano, Italy)
- H. Lischka, A. Aquino (TTU, USA)
- F. Plasser (Heidelberg, Germany)
- J. Wenzel, A. Dreuw (Heidelberg, Germany)
- S. Haacke, S. Méry (Strasbourg, France)
- F. Sterpone (IBPC, Paris)
- E. R. Bittner (Houston University, USA)
- L. S. Cederbaum (Heidelberg, Germany)
- A. Panda (IIT Guwahati, India)
- D. Beljonne, Y. Olivier (Mons, Belgium)

Thanks to: DFG, CNRS, ANR (France) for financial support

Semiclassically Scaled G-MCTDH Quantum-Classical Dynamics Variational Multiconfigurational Ehrenfest Dynamics

Theoretical Chemistry of Complex Systems

AK Burghardt

QuSeT18 - Quantum and Semiclassical Trajectories

Dynamics: Test Case OT-20

- Do we see trapped exciton-polarons in the dynamics?
- How exactly does the exciton migrate as the conjugation break "heals"?
- How does the spatial extension of the exciton change as a function of conformational (torsional) fluctuations?

Monomer representation: most unbiased picture to answer these questions!

Binder, Lauvergnat, Burghardt, Phys. Rev. Lett. 120, 227401 (2018)

Quantum Dynamics: 20-Site J-Aggregate with Central Torsion

C-C inter-monomer mode + local C=C + torsion + bath

C-C inter-monomer + torsion + bath

QuSeT18 - Quantum and Semiclassical Trajectories

Variational Gaussian Wavepacket Dynamics

Semiclassical SQC/MM dynamics (T=0K)

- SQC/MM = Symmetrical Quasi-Classical / Meyer-Miller model
- single-trajectory result close to MCTDH, but Wigner average "fuzzy"

Liang, Cotton, Binder, Hegger, Burghardt, Miller, J. Chem. Phys., in press (2018)

Ehrenfest/Langevin dynamics (T=0K)

- single-trajectory dynamics exhibits fluctuations
- Wigner average "fuzzy" due to Wigner sampling of high-frequency modes

Liang, Cotton, Binder, Hegger, Burghardt, Miller, J. Chem. Phys., in press (2018)

Adiabatic Populations (T=0K)

- SQC/MM reproduces the adiabatic populations quite accurately
- Ehrenfest shows severe shortcomings (related to detailed-balance problem)
- both methods incur problems due to ZPE of high-frequency modes

Liang, Cotton, Binder, Hegger, Burghardt, Miller, J. Chem. Phys., in press (2018)

Temperature Effects: Ehrenfest/Langevin dynamics

- single-trajectory simulation, with ZPE of high-frequency modes removed
- exciton migration at higher T is related to repeated non-adiabatic events
- interplay of torsional fluctuations and trapping explains observations
- quantum benchmark simulations needed (via random-phase wavefunctions, or thermofield method, combined with MCTDH)

Wahl, Hegger, Binder, Burghardt, in preparation

Multiconfigurational Ehrenfest Dynamics, Cont'd

G-MCTDH: System-Bath Models

- discretized bath spectral densities (SDs) represented by "GWP bath"
- hierarchical chain representations of SDs that are (partially) represented by GWPs including Langevin closure

$$\hat{H}_{SB} + \hat{H}_B = \hat{s} \sum_i c_n \hat{x}_n + \hat{H}_B \longrightarrow D\hat{s}\hat{X}_1 + D_{12}\hat{X}_1\hat{X}_2 + \ldots + \hat{X}_M \text{-residual bath}$$

Approximate SD's: Mth Order Truncation

$$J(\boldsymbol{\omega}) = \frac{\pi}{2} \sum_{n} \frac{c_n^2}{\omega_n} \delta(\boldsymbol{\omega} - \omega_n) \quad \Longleftrightarrow \quad J^{(M)}(\boldsymbol{\omega}) = \lim_{\varepsilon \to 0^+} \operatorname{Im} K_B^{(M)}(\boldsymbol{\omega} - i\varepsilon)$$

Hughes, Christ, Burghardt, JCP 131, 124108 (2009), Garg, Onuchic, Ambegaokar, JCP 83, 4491 (1985), Leggett, Phys. Rev. B 30, 1208 (1984)

Ohmic closure:

Rubin (quasi-Ohmic) closure:

$$I_{\rm ohm}^{M}(z) = -i\frac{\gamma}{z} \qquad \qquad I_{\rm Rubin}^{M}(z) = \frac{1}{2z} \frac{\Lambda_{R}^{2} - 2z^{2} + 2iz\sqrt{\Lambda_{R}^{2} - z^{2}}}{z + i\sqrt{\Lambda_{R}^{2} - z^{2}}}$$

Hughes, Christ, Burghardt, J. Chem. Phys. 131, 024109 (2009), Martinazzo, Vacchini, Hughes, Burghardt, J. Chem. Phys. 134, 011101 (2011)