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Solution Exercise 2

1. (a) We need to evaluate the action of the operator T̂nuc = − ~2
2M

∂2

∂R2

on the wavefunction Ψ(r, R) =
∑

n ψ
el
n (r|R)χnuc

n (R). We start by
computing the first derivative of Ψ(r, R) with respect to R:

∂

∂R
Ψ(r, R) =

∑
n

∂ψel
n

∂R
χnuc
n + ψel

n

∂χnuc
n

∂R
(1)

Note that we have used the derivative product rule since both
the nuclear wavefunctions χnuc

n and the the adiabatic electronic
states ψel

n (r|R) depends on R (the dependence of ψel
n (r|R) is para-

metric, since we assume that R is a parameter in the electronic
hamiltonian). We then derive the first derivative to get the second
derivative:

∂

∂R
Ψ(r, R) =

∑
n

∂2ψel
n

∂R2
χnuc
n + 2

∂ψel
n

∂R

∂χnuc
n

∂R
+ ψel

n

∂2χnuc
n

∂R2
(2)

We conclude that:

T̂nucΨ = − ~2

2M

(∑
n

∂2ψel
n

∂R2
χnuc
n + 2

∂ψel
n

∂R

∂χnuc
n

∂R
+ ψel

n

∂2χnuc
n

∂R2

)
(3)

(b) The summation of Eq. 3 contains three addends. We multiply
and integrate separately each term. The first gives:∫

dr ψel
m

?
(r|R)

∂2ψel
n

∂R2
(r|R)χnuc

n (R) =

χnuc
n (R)

∫
dr ψel

m

?
(r|R)

∂2ψel
n

∂R2
(r|R) = Gmn(R)χnuc

n (R) (4)

where we have moved the nuclear wavefunction χnuc
n (R) outside

the integral (because it is not dependent on r) and we have re-
named the integral Gmn(R). The integrand depends on both the
electron and nuclear coordinates and on the indices of the adia-
batic electronic states m and n. After carrying out the integration
on r, the resulting integral Gmn(R) does not depend on the elec-
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tron coordinate. Likewise,∫
dr ψel

m

?
(r|R) 2

∂ψel
n

∂R
(r|R)

∂χnuc
n

∂R
(R) =

2
∂χnuc

n

∂R
(R)

∫
dr ψel

m

?
(r|R)

∂ψel
n

∂R
(r|R) = 2Fmn(R)

∂

∂R
χnuc
n (R) (5)

For the third term, we have∫
dr ψel

m

?
(r|R) ψel

n (r|R)
∂2χnuc

n

∂R2
(R) =

∂2χnuc
n

∂R2
(R)

∫
dr ψel

m

?
(r|R) ψel

n (r|R) = δmn
∂2χnuc

n

∂R2
(R) (6)

where we have carried out the integration by making use of the
the orthogonality of the electronic wavefunctions. Summing all
the terms, we obtain∫

dr ψel
m

?
(r|R) T̂nucΨ(r, R) =

− ~2

2M

∑
n

(
Gmn(R)χnuc

n (R) + 2Fmn(R)
∂χnuc

n (R)

∂R
+ δmn

∂2χnuc
n

∂R2
(R)

)
=

− ~2

2M

[
∂2χnuc

m

∂R2
(R) +

∑
n

(
Gmn(R) + 2Fmn(R)

∂

∂R

)
χnuc
n (R)

]
(7)

where we have used the definition of Kronecker delta

δmn =

{
0 m 6= n

1 m = n
(8)

By setting Λ̂mn(R) = − ~2
2M

(
Gmn(R) + 2Fmn(R) ∂

∂R

)
we obtain

Eq. (2) from the text of the exercise:∫
dr ψel

m

?
(r|R) T̂nucΨ(r, R) =

− ~2

2M

∂2χnuc
m

∂R2
(R) +

∑
n

Λ̂mn(R)χnuc
n (R) (9)
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(c) We start from the complete Hamiltonian for the system and the
associated eigenvalue–eigenvector problem:(

− ~2

2M

∂2

∂R2
+Hel

)
Ψ(r, R) = EΨ(r, R) (10)

As we have done in the second part of the exercise, we have to
substitute the group Born-Oppenheimer wavefunction, then mul-
tiply by ψel

m
?
(r|R) and finally integrate. We proceed one term at

a time.

We start from the term HelΨ(r, R). We first exploit the fact that
Ψ(r, R) is a superposition of adiabatic electronic wavefunctions,
which are eigenvectors of the electronic hamiltonianHelψ

el
n (r|R) =

εn(R)ψel
n (r|R). In detail

HelΨ(r, R) = Hel

∑
n

ψel
n (r|R)χnuc

n (R) =∑
n

(
Helψ

el
n (r|R)

)
χnuc
n (R) =

∑
n

εn(R)ψel
n (r|R)χnuc

n (R) (11)

By multiplying last formula by ψel
m

?
(r|R) and integrating over r

we get ∫
dr ψel

m

?
(r|R)HelΨ(r, R) = εm(R)χnuc

m (R) (12)

where we have used again the orthogonality of the adiabatic elec-
tronic wavefunctions. Using again this orthogonality property, we
can obtain ∫

dr ψel
m

?
(r|R)EΨ(r, R) = Eχnuc

m (R) (13)

Now, if we take Eq. 10 and we multiply and integrate, we can
substitute the results of Eq.s 9, 12 and 13 to obtain Eq. (3) of the
text of the exercise:(
− ~2

2M

∂2

∂R2
+ εm(R)

)
χnuc
m (R)+

∑
n

Λ̂mn(R)χnuc
n (R) = Eχnuc

m (R)

(14)
We then realize that εm(R) is the m-th eigenvalue of the elec-
tronic hamiltonian (the m-th “potential energy surface”) whereas
E stands for the eigenvalue of the full Hamiltonian.
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(d) According to the time–dependent Schrödinger equation:

∂

∂t
Ψ(r, R, t) =

1

ı~
HfullΨ(r, R, t) (15)

where we have now generalized the group Born-Oppenheimer rep-
resentation by considering time–dependent nuclear wavefunctions
(we still assume to expand our full wavefunction on the time–
independent electronic adiabatic wavefunction)

Ψ(r, R, t) =
∑
n

ψel
n (r|R)χnuc

n (R, t) (16)

If we now start from Eq. 15 and repeat the procedure outlined in
the previous parts of the exercise (substitution of the wavefunction
ansatz, multiplication by an arbitrary electronic adiabatic wave-
function, integration along the electronic coordinates), we obtain

∂

∂t
χnuc
n (R, t) =

1

ı~

(
− ~2

2M

∂2

∂R2
+ εm(R)

)
χnuc
m (R, t)

+
∑
n

Λ̂mn(R)χnuc
n (R, t) (17)

(e) Within the group Born-Oppenheimer representation, we consider
the global wavefunction of the system as a superposition of dif-
ferent electronic states and the nuclear wavefunctions as the R–
dependent expansion coefficients on the adiabatic electronic states.
Each nuclear wavefunction describe then the probability of find-
ing the system in that electronic states. In this picture, the cou-
pling terms determine the interaction between the components
of the whole wavefunction in the different electronic states. In
the time–dependent Schrödinger equation, Eq. 17, the coupling
terms determine the possibility of moving the wavepacket from
one electronic state to the other, i.e. the possibility of a non–
adiabatic electronic transition. In the standard form of the Born-
Oppenheimer approximation, the nuclear Hamiltonian does not
contain the coupling terms

∑
n Λ̂mn(R)χnuc

n (R, t) and then there is
no interaction between the different electronic states. Accordingly,
in the time evolution described by the time–dependent Schrödinger
equation, transitions between different electronic states are not
possible.
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2. Eq. (3) in matrix form is

Hχnuc = Eχnuc (18)

where H is the matrix

H =

[
− ~2

2M
∂2

∂R2 + ε1(R) + Λ̂11(R) Λ̂12(R)

Λ̂21(R) − ~2
2M

∂2

∂R2 + ε2(R) + Λ̂22(R)

]
(19)

and χnuc is the vector

χnuc =

[
χnuc
1 (R, t)
χnuc
2 (R, t)

]
(20)

(to verify this equivalence, simply compute the matrix-vector product
Hχnuc and then confront the two vector elements obtained with the
corresponding element of the vector on the r.h.s)

3. In the common “mixed” notation that is used for non–adiabatic prob-
lems, we use to indicate the electronic states as bra/ket and keep the
nuclear states as wavefunctions. For the sake of brevity, we also omit
the dependence on R, Eq. (1) of the text of the exercise is:

|Ψ〉 =
∑
n

|ψel
n 〉χnuc

n (21)

Eq. (2) is:

〈ψel
m| T̂nuc|Ψ〉 = − ~2

2M

∂2χnuc
m

∂R2
+
∑
n

Λ̂mnχ
nuc
n (22)

In this braket notation, Eq. (3) is left unchanged, since it does not
contain electronic wavefunctions:(

T̂nuc + εm

)
χnuc
m +

∑
n

Λ̂mnχ
nuc
n = Eχnuc

m (23)
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