
Theoretical Photochemistry WiSe 2017/18 – Detailed

discussion of Exercise 3

Figure 1: Adiabatic energies of the two lowest adiabatic states of the NaI molecule, as a

function of the interatomic distance. The ground state (black line) has a ionic character

at short distances and a covalent character at long distances. The opposite is true for the

first excited adiabatic state (gray line).

The electronic wavefunctions {|ψ1(R)〉, |ψ2(R)〉} of the two lowest adiabatic states of the

NaI molecule are expressed as linear combinations of diabatic wavefunctions {|ϕ1〉, |ϕ2〉},

|ψ1(rel;R)〉 = cos γ(R)|ϕ1(rel〉+ sin γ(R)|ϕ2(rel)〉

|ψ2(rel;R)〉 = sin γ(R)|ϕ1(rel)〉 − sin γ(R)|ϕ2(rel)〉 . (1)

The geometry-dependent adiabatic states are defined to be eigenstates of the electronic

Schrödinger equation,

Ĥ(rel;R)|ψi(rel;R)〉 = Vi(R)|ψi(rel;R)〉 . (2)

The electronic Hamiltonian Ĥ(rel;R) operates only on the electronic coordinates (rel) and is

parametrized by the nuclear geometry (R). As a consequence, the adiabatic wavefunctions

are also geometry-dependent.

On the contrary, the diabatic wavefunctions ϕ1(rel) and ϕ2(rel) are defined to describe the

same electronic configuration at all geometries, therefore they can be considered independent

on R. In the case of NaI, we can define |ϕ1〉 as a ‘ionic’ wavefunction, in which the bonding

electronic distributions is polarized in the direction of the I atom, and |ϕ2〉 as a ‘covalent’

distribution, in which the bonding electrons are equally shared between the two atoms.
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Given the orthonormality relation between the diabatic states, 〈ϕi|ϕj〉 = δij, Equations (1)

give generic linear combinations of diabatic states, which yield orthonormal adiabatic states.

This can be verified explicitly (hereafter, the electronic coordinates rel are not explicitly

indicated):

〈ψ1(R)|ψ1(R)〉 = (cos γ(R)〈ϕ1|+ sin γ(R)〈ϕ2|) (cos γ(R)|ϕ1〉+ sin γ(R)|ϕ2〉)

= cos2 γ(R) 〈ϕ1|ϕ1〉︸ ︷︷ ︸
1

+ cos γ(R) sin γ(R) 〈ϕ1|ϕ2〉︸ ︷︷ ︸
0

+ sin γ(R) cos γ(R) 〈ϕ2|ϕ1〉︸ ︷︷ ︸
0

+ sin2 γ(R) 〈ϕ2|ϕ2〉︸ ︷︷ ︸
1

= cos2 γ(R) + sin2 γ(R) = 1 (3)

〈ψ1(R)|ψ2(R)〉 = (cos γ(R)〈ϕ1|+ sin γ(R)〈ϕ2|) (sin γ(R)|ϕ1〉 − cos γ(R)|ϕ2〉)

= cos γ(R) sin γ(R) 〈ϕ1|ϕ1〉︸ ︷︷ ︸
1

− cos2 γ(R) 〈ϕ1|ϕ2〉︸ ︷︷ ︸
0

+ sin2 γ(R) 〈ϕ2|ϕ1〉︸ ︷︷ ︸
0

− sin γ(R) cos γ(R) 〈ϕ2|ϕ2〉︸ ︷︷ ︸
1

= cos γ(R) sin γ(R)− sin γ(R) cos γ(R) = 0 (4)

〈ψ2(R)|ψ1(R)〉 = (sin γ(R)〈ϕ1| − cos γ(R)〈ϕ2|) (cos γ(R)|ϕ1〉+ sin γ(R)|ϕ2〉)

= sin γ(R) cos γ(R) 〈ϕ1|ϕ1〉︸ ︷︷ ︸
1

− sin2 γ(R) 〈ϕ1|ϕ2〉︸ ︷︷ ︸
0

− cos2 γ(R) 〈ϕ2|ϕ1〉︸ ︷︷ ︸
0

− cos γ(R) sin γ(R) 〈ϕ2|ϕ2〉︸ ︷︷ ︸
1

= sin γ(R) cos γ(R)− cos γ(R) sin γ(R) = 0 (5)

〈ψ2(R)|ψ2(R)〉 = (sin γ(R)〈ϕ1| − cos γ(R)〈ϕ2|) (sin γ(R)|ϕ1〉 − cos γ(R)|ϕ2〉)

= sin2 γ(R) 〈ϕ1|ϕ1〉︸ ︷︷ ︸
1

− sin γ(R) cos γ(R) 〈ϕ1|ϕ2〉︸ ︷︷ ︸
0

− cos γ(R) sin γ(R) 〈ϕ2|ϕ1〉︸ ︷︷ ︸
0

+ cos2 γ(R) 〈ϕ2|ϕ2〉︸ ︷︷ ︸
1

= cos2 γ(R) + sin2 γ(R) = 1 . (6)

In the adiabatic representation, the electronic Hamiltonian Ĥel is diagonal,〈
ψi(R)

∣∣∣Ĥel

∣∣∣ψj(R)
〉

= Vi(R)δij (7)

whereas the nuclear kinetic energy operator T̂R = − ~2

2M

∂2

∂R2
is non-diagonal (therefore the

total Hamiltonian is non-diagonal),〈
ψi(R)

∣∣∣Ĥel

∣∣∣ψj(R)
〉

=

(
− ~2

2M

∂2

∂R2

)
δij + Λ̂ij , (8)
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where the non-adiabatic couplings are given as

Λ̂ij(R) = −~2

M

〈
ψi(R)

∣∣∣∣∂ψj

∂R

〉
∂

∂R
− ~2

2M

〈
ψi(R)

∣∣∣∣∂2ψj

∂R2

〉
(9)

and describe the non-radiative transitions between adiabatic electronic states.

1. In order to express the so-called derivative couplings, Fij(R) =

〈
ψi(R)

∣∣∣∣∂ψj

∂R

〉
in terms

of the mixing angle γ(R), we evaluate the derivative of the adiabatic wavefunctions,

given as in Eq. (1),∣∣∣∣∂ψ1

∂R

〉
= −γ′(R) sin γ(R)|ϕ1〉+ γ′(R) cos γ(R)|ϕ2〉∣∣∣∣∂ψ2

∂R

〉
= γ′(R) cos γ(R)|ϕ1〉+ γ′(R) sin γ(R)|ϕ2〉 . (10)

Using the orthonormality condition 〈ϕi|ϕj〉 = δij, we get

F11(R) =

〈
ψ1(R)

∣∣∣∣∂ψ1

∂R

〉
= −γ′(R) cos γ(R) sin γ(R) + γ′(R) sin γ(R) cos γ(R) = 0 (11)

F12(R) =

〈
ψ1(R)

∣∣∣∣∂ψ2

∂R

〉
= γ′(R) cos2 γ(R) + γ′(R) sin2 γ(R) = γ′(R) (12)

F21(R) =

〈
ψ2(R)

∣∣∣∣∂ψ1

∂R

〉
= −γ′(R) sin2 γ(R)− γ′(R) cos2 γ(R) = −γ′(R) (13)

F22(R) =

〈
ψ2(R)

∣∣∣∣∂ψ2

∂R

〉
= γ′(R) sin γ(R) cos γ(R)− γ′(R) cos γ(R) sin γ(R) = 0 (14)

Note the following general property of derivative couplings:

Fij(R) + Fji(R) = 0 . (15)
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2. The scalar couplings, Gij(R) =

〈
ψi(R)

∣∣∣∣∂2ψj

∂R2

〉
, can be expressed in terms of γ(R) by

taking the second derivative of the adiabatic wavefunctions. From Eqs. (17) we get∣∣∣∣∂2ψ1

∂R2

〉
=

[
−γ′′(R) sin γ(R)− γ′(R)2 cos γ(R)

]
|ϕ1〉

+
[
γ′′(R) cos γ(R)− γ′(R)2 sin γ(R)

]
|ϕ2〉

(16)∣∣∣∣∂2ψ2

∂R2

〉
=

[
γ′′(R) cos γ(R)− γ′(R)2 sin γ(R)

]
|ϕ1〉

+
[
γ′′(R) sin γ(R) + γ′(R)2 cos γ(R)

]
|ϕ2〉 .

The overlaps with 〈ψi(R)| give

G11(R) =

〈
ψ1(R)

∣∣∣∣∂2ψ1

∂R2

〉
= −γ′(R)2

G12(R) =

〈
ψ1(R)

∣∣∣∣∂2ψ2

∂R2

〉
= γ′′(R)

G21(R) =

〈
ψ2(R)

∣∣∣∣∂2ψ1

∂R2

〉
= −γ′′(R)

G22(R) =

〈
ψ2(R)

∣∣∣∣∂2ψ2

∂R2

〉
= −γ′(R)2 .

3. Considering a potential energy diagram as in Fig. 1, in the close proximity of the

avoided crossing, R ≈ R0, the diabatic potentials, i. e. the matrix elements of the

electronic Hamiltonian, can be approximated at the lowest order as

H11(R) =
〈
ϕ1

∣∣∣Ĥel(R)
∣∣∣ϕ1

〉
= α1(R−R0)

H22(R) =
〈
ϕ2

∣∣∣Ĥel(R)
∣∣∣ϕ2

〉
= α2(R−R0) (17)

H12(R) =
〈
ϕ1

∣∣∣Ĥel(R)
∣∣∣ϕ2

〉
= β = H21(R) .

This is the key difference between adiabatic states: The adiabatic states are the eigen-

states of the electronic Hamiltonian, but the full molecular Hamiltonian has off-diagonal

kinematic couplings [see Eqs. (7) and (8)]; in the diabatic representation the kinematic

couplings are negligible, but potential couplings arise.

The mixing angle γ(R), which defines the transformation between diabatic and adi-

abatic states, depends on the diabatic matrix elements {Hij}. It can be found by

imposing that the electronic Hamiltonian has no off-diagonal term in the adiabatic

basis,〈
ψ1(R)

∣∣∣Ĥel

∣∣∣ψ2(R)
〉

= 0 . (18)
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Replacing Eqs. (1) and (17) into Eq. (18),

0 = [cos γ(R)〈ϕ1|+ sin γ(R)〈ϕ2|] Ĥel [sin γ(R)|ϕ1〉 − cos γ(R)|ϕ2〉]

= cos γ(R) sin γ(R)H11(R)− cos2 γ(R)H12(R)

+ sin2 γ(R)H21(R)− sin γ(R) cos γ(R)H22(R)

= sin γ(R) cos γ(R) [H11(R)−H22(R)]−
[
cos2 γ(R)− sin2 γ(R)

]
H12(R)

=
1

2
sin (2γ(R)) [H11(R)−H22(R)]− cos (2γ(R))H12(R) . (19)

Dividing both sides by cos (2γ(R)), we finally obtain

tan (2γ(R)) =
2H12(R)

H11(R)−H22(R)
(20)

=
2β

(α1 − α2)(R−R0)
. (21)

Eq. (20) has a general validity for any system of two electronic states and any form of

the diabatic potentials. Eq (21) is specified for the model of Eq. (17).

4. Transitions between electronic states are likely to occur when the non-adiabatic cou-

plings, in particular derivative couplings, are large. The magnitude of F12(R) is given

by the derivative of the mixing angle γ(R). In order to calculate γ′(R), we differentiate

both sides of Eq. (21),1

(
1 + tan2 (2γ(R))

)
2γ′(R) = − 2β

(α1 − α2)(R−R0)2

(α1 − α2)
2(R−R0)

2 + 4β2

(α1 − α2)2(R−R0)2
γ′(R) = − β

(α1 − α2)(R−R0)2

(α1 − α2)
2(R−R0)

2 + 4β2

(α1 − α2)
γ′(R) = −β . (22)

The final expression for magnitude of the derivative coupling is

|F12(R)| = |γ′(R)| = |β(α1 − α2)|
(α1 − α2)2(R−R0)2 + 4β2

. (23)

As a function of R, γ′(R) is a Lorentzian with center at R = R0 and full width at

half maximum of |2β/(α1 − α2)|. The range of Na—I distances in which the internal

conversion is likely is directly proportional to the diabatic coupling β and inversely

proportional to the difference between the slopes of the diabatic potentials.

1Remember that d
dx tanx = 1 + tan2 x.
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