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Topics

Photophysical Processes

. Wavepackets

The Franck-Condon picture of electronic transitions

. What do we measure experimentally?

The Born-Oppenheimer approximation

Beyond Born-Oppenheimer — non-adiabatic transitions

Conical intersections

Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene
Intermolecular energy transfer, light-harvesting, and Forster theory

Dynamics: trajectories or wavefunctions?

. Coherence and Dephasing
. Non-linear optical spectroscopy: calculation of spectroscopic signals

. Solvent/environmental effects



Photoinduced intermolecular energy transfer
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Light-harvesting systems (LH’s)
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Exciton transfer in the FMO complex

Brixner & collaborators, Nature 434, 625 (2005)
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e FMO = Fenna-Matthews-Olson bacteriochlorophyll a (BChl) protein of green sulphur
bacteria

e antenna system that collects light and channels excitation to a reaction center where

charge transfer takes place ;



“Coherence dynamics in photosynthesis: protein
protection of excitonic coherence”

Lee, Cheng, Fleming, Science 316, 1462 (2007)
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e 2CECPE = two-color electronic coherence photon echo experiment



Multi-chromophoric systems

Two basic (single-excited) configurations:

|91) = ey ® |g?) |#2) = |g'M) ® |e?)

For two identical, non-interacting monomers, these configurations are
degenerate

once an excitonic coupling is included, the degeneracy is removed

Frenkel exciton state = superposition of these configurations:

|\Ilexciton(t)> — Cl(t)|¢1> + C2(t)|¢2>



What is the excitonic coupling?

e Coulomb coupling matrix element between donor (D) and acceptor (A)
permitting transitions between single-excited configurations:

j — <6DgA | VCoulomb |gDeA>

e this can be re-written in terms of coupled transition densities p(g ®) and

p(Dg) (noting that D/A exchange interactions have been disregarded!):

i [a s gy P57 (D)PA" (1)
” rp — ra4

e at large D-A distances, one can approximate transition densities by

transition dipoles: p( 9__, 'U(DQ)



Dipole Approximation

Initial state
4 _l_
‘ (DDe (DAg ‘ I
D
N onor Accept@

FRET
q

(WA Voalvheh) = (hl

K pa = orientational factor

Final state

/

N

} | D),
Do

—
(DAe {
Acceptop

nor

rpal’®

D fra (rpa-fp)(rpa-fia)

rpal®

(Vpliap|Yp) (Palidalvy)
KDA

TpaAl?

YY)



e 7 < 0: J-aggregates, 3 > 0: H-aggregates

J and H Aggregates

M1 + M2 = m (transition moment) must be greater than 2ero for

transition to be allowed,
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e absorption spectra are red-shifted (J-aggregates) and blue-shifted (H-

aggregates)
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J and H Aggregates

Solve for the eigenvalues and eigenvectors of the matrix Hamiltonian (in

the basis of excitonic configurations |¢1), |®2)):

n=(52)
J €o

eigenvalues: £ = €y = J eigenvectors: |¢p1) = 1/v2(|¢1)  |h2))

e for the eigenvector |¢,), the monomer transition dipole moments
M; = (e®|a|g®), i = 1,2, add up constructively, while the opposite
is the case for the |¢_) eigenvector — “bright” vs. “dark” states

e the sign of the coupling 3 determines which eigenvalue is the lower one.
Therefore, the sign of the coupling 5 also determines whether the upper
or lower state is dark — distinction between J and H aggregates!
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Vibronic coupling picture of excitation energy
transfer (EET)
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e FRET = fluorescence resonance energy transfer (equivalent to EET)
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Exciton transfer can be coherent and ultrafast

qguantum dynamics simulation:
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e site-site excitation energy transfer |¢,,)—|pn+t1)
e transfer is mediated by coherences |¢,,) (¢, 1]

e but the environment could rapidly induce “decoherence”
e coherent transfer can be observed experimentally!
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Excitonic eigenstate picture

electronic densities of stacked

adenine pentamer corresponding to two
nr* states with different degrees of
localisation

Bittner & co-workers, in: Energy Transfer
Dynamics in Biomaterial Systems, Burghardt et
al. (eds), Springer (2009).
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e the excitonic eigenstates are obtained by diagonalizing the exciton
Hamiltonian, as a function of the nuclear coordinates:

|\Ilexciton(R; t)> — Z C'n,(Ra t) |¢n>
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Can we use perturbative limits?

consider site-site coupling (J) vs. electron-phonon coupling (k)

e case 1: J K Kk

Forster theory — non-coherent hopping between sites

e.g., Scholes & collaborators, J. Phys. Chem. B, 113, 656 (2009): EET in semiconducting polymers

ecase 2: kK J

excitonic eigenstates in a vibrational bath

e.g., Abramavicius & Mukamel, J. Chem. Phys. 133, 064510 (2010): EET in Photosystem Il

e but in most systems of interest: Kk ~ J

in principle, we need the full dynamics on the Born-Oppenheimer surfaces
of the oligomer/aggregate species 16



Excitation Energy Transfer (EET): Forster rates

Resonance Energy Transfer Jablonski Diagram
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resonant donor-acceptor transfer

also denoted FRET = fluorescence
resonance energy transfer

interacting transition dipole
moments

standard description: Forster rate

Scholes & collaborators, J. Phys. Chem. B, 113, 656 (2009)
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Fluorescent markers in biological applications
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Figure 1. The use of GFP variants to produce FRET. In A, Distant; UV light excites BFF (donor
fluarophore] to emit blue light (peak emission = 450nm), but GFP [acceptar] is not close enough to
draw energy from the excited donor. In B, Close; praximity of GFP to BFP allows non-radiarive
energy transfer, the stimulated BFP exciting GFP to fluoresce green (peak emission = 510nm). Figure
1C shows the expected emission spectra when the GEP fluorophores are either close or distant.
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Time-resolved FRET

Heeger & co, PNAS 101, 11634 (2004), PNAS 102, 530 (2005)
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Derivation of Forster theory, in a nutshell:
Fermi’s Golden Rule + dipole-dipole interaction

thermally averaged rate (2nd order perturbation theory):

2
kpa=" Y FER)F(EY (Wl Voilvhwia) *6(Ep+ By — B —Ep)

D/A vib. states
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Now identify the ingredients of this formula with the expressions for the
donor emission / acceptor absorption spectra — spectral overlap 20



Fermi’s Golden Rule

Transition probability between quantum states that are subject to a perturbation

H(t) = Hy+ V(¢

e.g., V(t) = —fi Ey ('t 4+ e~ 1) “perturbation”

Transition rate between two states a — b
(in 2nd order perturbation theory):

27 .
Tamo =~ (43 |01 6(B} — By + huw)

where E}) — E? = hwyp, - resonance condition! 21




Forster theory = rate theory for resonant energy
transfer between two dipoles
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“Forster radius” rr o orientational factor x spectral overlap

Inb(w) = donor emission spectrum
aa(w) = acceptor absorption spectrum
K pa = orientational factor:
Kpa = SinBp sin@ s cos®Parpp — 2 cosOp cosO 4

.e - . " . 2 _
Standard Forster expression: isotropic average K7, , = 2/3 22



Forster theory, cont’d
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Isotropic orientational average often inappropriate

Orientation Factor Critical Angles
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e standard Forster expression works if rotational motion is very fast as
compared with transfer rate

e in general: compute kpa(rpa,0pa)
e if transfer is much faster than rotational motion: static average
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Non-Forster behavior due to orientation effects

Wong, Bagchi, and Rossky, J. Phys. Chem. A, 108, 5752 (2004)

polyfluorene (PFz) — tetraphenylporphyrin (TPP)
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The Forster rate is recovered at large distances, ~ 100 A

At shorter distances, 72 gives a better fit
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We’'d expect deviations from Forster theory,
for various reasons:

e iIf EET time scales are short, and similar to the time scale of molecular

rearrangements: exciton dynamics picture necessary

e at short distances, exchange effects need to be accounted for (Dexter,

1953) — exponential variation of the rate with r

e for extended donor/acceptor entities, the point dipole approximation is

often not sufficient — multipole expansions

e for molecules near surfaces, the energy transfer is carried by (i) plasmons

(collective electronic excitation modes) and (ii) electron-hole excitations
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