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Topics

Photophysical Processes

. The Born-Oppenheimer approximation

. Wavepackets

Beyond Born-Oppenheimer — non-adiabatic transitions

. The Franck-Condon picture of electronic transitions

Interaction with light: allowed and forbidden transitions; symmetry
considerations

. Conical intersections

8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

. Some electronic structure aspects
10.

Dynamics: trajectories or wavefunctions?



11.
12.
13.
14.
15.
16.

Wavefunction propagation techniques

Trajectory surface hopping techniques

Transition rates: Fermi’s Golden Rule

Non-linear optical spectroscopy: calculation of spectroscopic signals
Extended systems: Excitons, light-harvesting, etc.

Solvent/environmental effects



Fermi’s Golden Rule

Transition probability between quantum states that are subject to a perturbation

H(t) = Hy+ V(¢

e.g., V(t) = —fi Eg ('t 4+ e~ 1) “perturbation”

Transition rate between two states a — b
(in 2nd order perturbation theory):
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where E}) — E? = hwyp, - resonance condition!




Derivation

We refer to the following reference by A. Wacker:

www.matfys.lth.se/staff/andreas.wacker/Scripts /fermiGR.pdf

The Hamiltonian is given as above:
H(t) = Hy+ V(¢
and we assume that Hy|p,) = E°|p,,).

The wavefunction can be written as follows, using the eigenfunctions of
the unperturbed Hamiltonian (Hj) as a basis:

p(E) = en(t)e Bt/ p,,)

The time-dependent phase factor is arbitrary (but convenient, as this

factor represents the time evolution under Hj). 5



Inserting the above wavefunction into the TDSE:
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Note that the terms marked in red cancel out, such that only two terms

are left.
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Now we multiply from the left by such as to single out the
time evolution of a particular coefficient c;:
ihe(t) = D ea(t)e™ Fnm B MoV (2)|ion)

n

Integration yields:
t
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0 n

Now we assume that only one coefficient n = j is initially non-zero:
cj(t = 0) = 1, such that only n = j contributes on the r.h.s. (to linear
order) and we approximate as follows:
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We continue to solve the integral for the specific form of the
interaction: V (t) = Fe'™! which includes constant interactions and
oscillatory interactions (e.g., external fields). In detail:
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Using c,(0) = 0, we have
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and for the transition probability:
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The time-dependent function (i.e., square of a “sinc” function) turns out
to be an approximation of the Dirac 0 function:
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such that we finally get the transition rate:
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If we go to quasi-continuum of states, with a density of states p:
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Note that the derivation relies on various approximations (weak
perturbation, short-time limit, etc.) and the validity needs to be checked in
particular cases. In practice, Fermi’s Golden Rule works fine for describing:

e interactions with the electromagnetic field (absorption, emission)

e transfer processes to a continuum of states (e.g., Forster theory, in case
of a quasi-continuum of vibronic states)
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