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Topics

1. Photophysical Processes

2. The Born-Oppenheimer approximation

3. Wavepackets

4. Beyond Born-Oppenheimer – non-adiabatic transitions

5. The Franck-Condon picture of electronic transitions

6. Interaction with light: allowed and forbidden transitions; symmetry
considerations

7. Conical intersections

8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

9. Some electronic structure aspects

10. Dynamics: trajectories or wavefunctions?
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11. Wavefunction propagation techniques

12. Trajectory surface hopping techniques

13. Transition rates: Fermi’s Golden Rule

14. Non-linear optical spectroscopy: calculation of spectroscopic signals

15. Extended systems: Excitons, light-harvesting, etc.

16. Solvent/environmental effects
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Fermi’s Golden Rule

Transition probability between quantum states that are subject to a perturbation

Ĥ(t) = Ĥ0 + V̂ (t)

e.g., V̂ (t) = −µ̂ E0 (eiωt + e−iωt) “perturbation”

Transition rate between two states a→ b
(in 2nd order perturbation theory):

Γa→b =
2π

h̄
|〈ψ(0)

b |µ̂|ψ
(0)
a 〉|

2 δ(E0
b − E

0
a ± h̄ω)

where E0
b − E0

a = h̄ωba - resonance condition!
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Derivation

We refer to the following reference by A. Wacker:

www.matfys.lth.se/staff/andreas.wacker/Scripts/fermiGR.pdf

The Hamiltonian is given as above:

Ĥ(t) = Ĥ0 + V̂ (t)

and we assume that Ĥ0|ϕn〉 = E0
n|ϕn〉.

The wavefunction can be written as follows, using the eigenfunctions of
the unperturbed Hamiltonian (Ĥ0) as a basis:

|ψ(t)〉 =
∑
n

cn(t)e−iE0
nt/h̄|ϕn〉

The time-dependent phase factor is arbitrary (but convenient, as this
factor represents the time evolution under Ĥ0). 5



Inserting the above wavefunction into the TDSE:

ih̄
∂

∂t

∑
n

cn(t)e−iE0
nt/h̄|ϕn〉 = (Ĥ0 + V̂ (t))

∑
n

cn(t)e−iE0
nt/h̄|ϕn〉

i.e.:

ih̄
∑
n

(
ċn(t) + cn(t)(−

iE0
n

h̄

)
e−iE0

nt/h̄|ϕn〉 = (Ĥ0 + V̂ (t))
∑
n

cn(t)e−iE0
nt/h̄|ϕn〉

i.e.:

ih̄
∑
n

(
ċn(t) + cn(t)(−

iE0
n

h̄

)
e−iE0

nt/h̄|ϕn〉 =
∑
n

cn(t)E0
ne
−iE0

nt/h̄|ϕn〉

+V̂ (t)
∑
n

cn(t)e−iE0
nt/h̄|ϕn〉

Note that the terms marked in red cancel out, such that only two terms
are left.
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ih̄
∑
n

ċn(t)e−iE0
nt/h̄|ϕn〉 = V̂ (t)

∑
n

cn(t)e−iE0
nt/h̄|ϕn〉

Now we multiply from the left by 〈ϕk|eiE
0
kt/h̄ such as to single out the

time evolution of a particular coefficient ck:

ih̄ċk(t) =
∑
n

cn(t)e−i(E0
n−E0

k)t/h̄〈ϕk|V̂ (t)|ϕn〉

Integration yields:

ih̄(ck(t)− ck(0)) =

∫ t

0

dt′
∑
n

cn(t′)e−i(E0
n−E0

k)t′/h̄〈ϕk|V̂ (t′)|ϕn〉

Now we assume that only one coefficient n = j is initially non-zero:
cj(t = 0) = 1, such that only n = j contributes on the r.h.s. (to linear
order) and we approximate as follows:

7



ih̄(ck(t)− ck(0)) '
∫ t

0

dt′ e−i(E0
j−E0

k)t′/h̄〈ϕk|V̂ (t′)|ϕj〉

We continue to solve the integral for the specific form of the
interaction: V̂ (t) = F̂ eiωt which includes constant interactions and
oscillatory interactions (e.g., external fields). In detail:

ih̄(ck(t)− ck(0)) '
(∫ t

0

dt′ e−i(E0
j−E0

k)t′/h̄eiωt
)
〈ϕk|F̂ |ϕj〉

'
(∫ t

0

dt′ e−i(E0
j−E0

k−h̄ω)t′/h̄
)
〈ϕk|F̂ |ϕj〉

≡
(∫ t

0

dt′ e−i∆Et′/h̄
)
〈ϕk|F̂ |ϕj〉

where∫ t

0

dt′ e−i∆Et′/h̄ =
h̄

−i∆E

(
e−i∆Et − e0

)
=

ih̄

∆E

(
e−i∆Et − 1

)
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Using ck(0) = 0, we have

ck(t) =
e−i∆Et − 1

∆E
〈ϕk|F̂ |ϕj〉

and for the transition probability:

Pk(t) = |ck(t)|2 =
∣∣∣e−i∆Et − 1

∆E

∣∣∣2|〈ϕk|F̂ |ϕj〉|2

=
∣∣∣e−i∆E

2 te
−i∆E

2 t − ei∆E
2 t

∆E

∣∣∣2|〈ϕk|F̂ |ϕj〉|2

=
4 sin2(∆E

2
t/h̄)

∆E2
|〈ϕk|F̂ |ϕj〉|2

The time-dependent function (i.e., square of a “sinc” function) turns out
to be an approximation of the Dirac δ function:

4 sin2(∆E
2
t/h̄)

∆E2
∼

2πt

h̄
δ(∆E)

such that we finally get the transition rate: 9



Γj→k =
Pk(t)

t
=

2π

h̄
δ(E0

j − E
0
k − h̄ω)|〈ϕk|F̂ |ϕj〉|2

If we go to quasi-continuum of states, with a density of states ρ:

ΓE =
2π

h̄
ρ(E − h̄ω)|〈ϕk|F̂ |ϕj〉|2

Note that the derivation relies on various approximations (weak
perturbation, short-time limit, etc.) and the validity needs to be checked in
particular cases. In practice, Fermi’s Golden Rule works fine for describing:

• interactions with the electromagnetic field (absorption, emission)

• transfer processes to a continuum of states (e.g., Förster theory, in case
of a quasi-continuum of vibronic states)
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