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Topics

1. Photophysical Processes

2. The Born-Oppenheimer approximation

3. Wavepackets

4. Beyond Born-Oppenheimer – non-adiabatic transitions

5. The Franck-Condon picture of electronic transitions

6. Interaction with light: allowed and forbidden transitions; symmetry
considerations

7. Conical intersections

8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

9. Some electronic structure aspects

10. Dynamics: trajectories or wavefunctions?
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11. Wavefunction propagation techniques

12. Trajectory surface hopping techniques

13. Non-linear optical spectroscopy: calculation of spectroscopic signals

14. Extended systems: Excitons, light-harvesting, etc.

15. Solvent/environmental effects
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Are the relevant transitions “allowed” or
“forbidden”?

transition dipole moment:

〈ψEn |µ|ψ
G
i 〉 ∼ µEG〈ψn|ψi〉

with the Franck-Condon factors Sni = 〈ψn|ψi〉

oscillator strength:

(dimensionless quantity which measures the total area under the absorption band σ(ωI) =
4π2ωI

3h̄c

∑
n |〈ψn|µ|ψi〉|

2δ(ωI − ωn)):

f =
(4πmeωEG

3e2h̄

)
|µEG|2
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Are the relevant transitions “allowed” or
“forbidden”?

1. check whether the electronic transition dipole moment µEG is non-zero
(and, hence, the oscillator strength f)

2. if (1) points towards an electronically forbidden transition, check
whether the transition is vibronically allowed
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1. Electronically allowed/forbidden transitions

(a) carbonyl (C=O) group:
π∗← n transition is forbidden

n ∼ O2py
ψπ∗ = c′χ(C2px) + cχ(O2px)

〈π∗|µ|n〉 ∼ c〈Opx|µ|Opy〉 = 0

but: intensity borrowing possible

(b) ethene:
π∗← π transition is allowed

transition to π∗ induces twisting
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E.g., calculations for the anionic PYP chromophore

eration depend on the chromophore’s environment. The n and

nPhMOs essentially correspond to lone pairs, with the n orbital

relating to the carbonyl oxygen lone pair with a contribution

from the 3p atomic orbitals of sulfur, while the nPh orbital

corresponds to the lone pair of the phenolic oxygen.

The results presented in the diagram were obtained throughout

from CC2 calculations. For pCTM, pCTM-, and complex I,

we also carried out EOM-CCSD calculations. This allowed us

to assess the quality of the CC2 method in describing the excited

states under consideration. A comparison of the CC2 and EOM-

CCSD data obtained for those three systems shows that the CC2

method correctly describes the π-π1
/

, π-π2
/

, n-π1
/

, and

π-Arg52 excited states, with deviations from the EOM-CCSD

energies that are not larger than about 0.3 eV for the π-π1
/

and

π-π2
/

states, 0.1 eV for the n-π1
/

state, and 0.4 eV for the

π-Arg52 state. The EOM-CCSD energies are always higher

than the CC2 values (explicit values of the excitation energies

under consideration can be found in table SM2 of the Supporting

Information).

The nPh-π1
/

excited state is a particular case: Here, the CC2

method was found to substantially underestimate the excitation

energy, with a deviation of about 1 eV from the EOM-CCSD

result. A possible reason for this poor agreement is the more

complicated electronic structure of the nPh-π1
/

state and, in

particular, the somewhat higher weight of doubly excited

Table 1. CC2 Calculated Properties for the π-π1
/

, π-π2
/

, n-π1
/

, nPh-π1
/

, and π-Arg52 Excited States in the Different Chromophore +

Amino Acid(s) Supermolecular Complexes: Oscillator Strengths, f (au); Change in the Permanent Dipole Moment under Transition to the
Excited State, |∆µb| (Debye)

π−π1
/

π−π2
/ n−π1

/ nPh−π1
/

π−Arg52

molecular system/complex f |∆µb| f |∆µb| f |∆µb| f |∆µb| f |∆µb|

pCTM 0.867 5.8 0.099 0.7 0.011 5.6
pCTM- 0.995 7.5 0.056 0.6 <10-3 5.7 0.015 14.7

I pCTM- + Arg52 0.759 8.6 <10-3 14.1 0.053 18.6
II I + Cys69 0.924 6.9 0.003 14.9 0.107 17.8
III I + Phe62 + Phe96 0.338 12.7 <10-3 13.9 0.052 18.2
IV I + Thr50 + Val66 + Tyr98 0.559 10.9 0.347 12.5
V I + Tyr42 + Glu46 1.074 11.0
VI IV + Tyr42 + Glu46 1.012 11.2
VII VI + Cys69 1.073 11.6

Figure 3. (a-e) Patterns of the principal highest occupied and lowest
unoccupied (virtual) molecular orbitals of the deprotonated chromophore
(pCTM-); (f) pattern of the lowest unoccupied molecular orbital of complex

I (pCTM- + Arg52). Note that the orbital patterns of the π and π1
/

orbitals
differ from those of the neutral chromophore (see Figure 1 of ref 18). In

particular, the π1
/

orbital is no longer localized on the double bond
conjugated with the aromatic ring.

Electronic Structure of the PYP Chromophore A R T I C L E S
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E.g., calculations for the anionic PYP chromophore
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2. Vibronically allowed transitions

• formaldehyde: the S0 − S1(n− π∗) transition is electronically forbidden
– but becomes allowed through vibronic coupling
• the out-of-plane bending mode acts as a symmetry-breaking mode
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Vibronically allowed transitions

• expand the electronic Hamiltonian in a Taylor expansion with respect
to nuclear displacements:

H = H(0) +
∑
i

(∂H
∂Qi

)
0
Qi + . . .

• The second term is a perturbation that mixes the electronic eigen-
functions:

ψ = ψε′ +
∑
ε 6=ε′

cεψε cε =
〈ε|
∑
i(∂H/∂Qi)0|ε′〉Qi
Eε′ − Eε

=
∑
i

κiQi
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• Dipole transition moment, e.g., from the ground state (ε′′)

µε′,ε′′ = 〈ε′|µ|ε′′〉+
∑
ε6=ε′

c∗ε′〈ε|µ|ε
′′〉

“Intensity borrowing” due to vibronic coupling

NB. The perturbation matrix elements are non-zero if
Γ(ε) ⊗ Γ(i) ⊗ Γ(ε′) contains the totally symmetric representation
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Symmetry considerations

Objective (in our context): use molecular symmetry to determine whether
perturbation matrix elements, or transition dipole moments are zero or
not (i.e., is the transition dipole-allowed, or vibronically allowed, or neither
of the two?)

More generally: consider a matrix element

〈a|Ω|b〉 =
∫
dτψ∗aΩψb

determine the symmetry of the wavefunctions and operators within the
molecular point group and decide if the integral can be non-zero
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Or, even more generally, consider an integral over a product of functions

I =
∫
dτ f (l)∗f (l′)f (l′′)

where l, l′, l′′ label different symmetries within a point group

The integrand has to be “totally symmetric” overall to have I 6= 0
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General procedure

• assign a point group to the molecule in question

• with regard to an integral I =
∫
dτ f (l)∗f (l′)f (l′′) determine the

symmetry of the individual functions with respect to the point group in
question

• determine whether the symmetry of the product corresponds to the
“totally symmetric” representation
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Example: Benzene (D6h)

three important bands in the UV:
185 nm – symmetry-allowed, intense
200 nm – symmetry-forbidden, weak
260 nm – symmetry-forbidden, weak

ground state: G(1A1g)

electric dipole operator:
A2u(z) + E1u(x, y)

allowed transitions:
E1u← 1A1g (185 nm)
1A2u← 1A1g

forbidden (but weak) transitions:
1B1u← 1A1g (200 nm)
1B2u← 1A1g (260 nm)
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• for a matrix element 〈ψ1|µ̂|ψ2〉, check whether the direct product
Γψ1 ⊗ Γµ ⊗ Γψ2 contains the totally symmetric representation A1g
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Symmetry operations

Symmetry operations = operations that leave the object (molecule)
apparently unchanged

The ensemble of symmetry operations for a given molecule define the
point group.
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Symmetry operations and symmetry elements

E = identity – the symmetry element is the object itself

Cn = n-fold rotation – the symmetry element is the axis of rotation

σ = reflection – the symmetry element is the mirror plane
(σv, σh, σd = vertical, horizontal, dihedral plane)

i = inversion – the symmetry element is the inversion center

Sn = n-fold improper rotation (“rotary-reflection”) = rotation +
horizontal reflection
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Group property

The set of symmetry operations of an object (e.g., a molecule) constitute
a group in a mathematical sense:

1. The identity is a symmetry operation

2. Symmetry operations combine in accord with the associative law of
multiplication

3. If R and S are symmetry operations, then RS is also a symmetry
operation

4. The inverse of each symmetry operation is also a symmetry operation
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Identifying point groups

21



Group multiplication tables
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Matrix representations

Choose a basis, e.g., the s orbitals of NH3: (sn, sA, sB, sC)

The matrix representatives multiply in exactly the same way as the
symmetry operations
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Irreducible representations (“irreps”)

Apply similarity transformations to reduce a given matrix representation
to a block-diagonal, “irreducible” form

“character” (trace) is invariant:

χ(R) =
∑
iDii(R)

χ(R) =
∑
l alχ

(l)(R)

determine coefficients:

al = 1/h
∑
R χ

(l)∗(R)χ(R)
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Similarity transformations: NH3

Choose a new basis, e.g., linear combinations of the s orbitals of NH3:
sN = sN
s1 = sA + sB + sC
s2 = 2sA − sB − sC
s3 = sB − sC

Obtain a block-diagonal representation! 25



Irreducible representations: character tables

A, B: symmetry species of one-dimensional irreps

E: two-dimensional irreps

T: three-dimensional irreps
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Which irreps are spanned by a reducible
representation?

Γred =
∑
l

alΓ
(l)

al =
1

h

∑
R

χ(l)∗(R)χ(R)

h = order of the group

R = symmetry operation

Γ(l) = symmetry species of the irreducible representation

χ = character of the (reducible or irreducible) representation
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How to use projection operators to generate
symmetry-adapted bases

For a given basis {fi}, apply projection operators as follows:

P(l)fi =
dl

h

∑
R

χ(l)(R)∗R fi

h = order of the group

dl = dimension of the irrep

R = symmetry operation

Γ(l) = symmetry species of the irreducible representation

χ = character of the (reducible or irreducible) representation
31



Symmetry properties of functions

(x, y, z) span A1 + E
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C3v, again

• determine symmetry of dipole operator from x, y, z entries
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