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Topics

Photophysical Processes

. The Born-Oppenheimer approximation

. Wavepackets

Beyond Born-Oppenheimer — non-adiabatic transitions

. The Franck-Condon picture of electronic transitions

Interaction with light: allowed and forbidden transitions; symmetry
considerations

. Conical intersections

8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

. Some electronic structure aspects
10.

Dynamics: trajectories or wavefunctions?



11.
12.
13.
14.
15.

Wavefunction propagation techniques

Trajectory surface hopping techniques

Non-linear optical spectroscopy: calculation of spectroscopic signals
Extended systems: Excitons, light-harvesting, etc.

Solvent/environmental effects



Are the relevant transitions “allowed” or
“forbidden’ ?

transition dipole moment:

(WP ||y ~ nec(VYn|thi)

with the Franck-Condon factors S,,; = (1,,|1;)

oscillator strength:

(dimensionless quantity which measures the total area under the absorption band o (wy) =
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Are the relevant transitions “allowed” or
“forbidden’ ?

. check whether the electronic transition dipole moment g is non-zero
(and, hence, the oscillator strength f)

. if (1) points towards an electronically forbidden transition, check
whether the transition is vibronically allowed



1. Electronically allowed /forbidden transitions

(a) carbonyl (C=0) group:
* <— n transition is forbidden

n ~ O2p,
Ynor = ' xX(C2ps) + cx(02p,)

(m*|pu|n) ~ c(Opz|pn|Opy) =0
but: intensity borrowing possible
(b) ethene:

7 <— 7 transition is allowed

transition to @* induces twisting




E.g., calculations for the anionic PYP chromophore

Electronic Structure of the PYP Chromophore ARTICLES

Table 1. CC2 Calculated Properties for the 7—x7, n—x5, n—x;, nen—a;, and 7—Arg52 Excited States in the Different Chromophore +
Amino Acid(s) Supermolecular Complexes: Oscillator Strengths, f (au); Change in the Permanent Dipole Moment under Transition to the
Excited State, |Az| (Debye)

-7} 7Ty n-my Ney—t; -Arg52
molecular system/complex f |Azi| f | Az f Az f |Azi| f |Azi|
pCTM 0.867 5.8 0.099 0.7 0.011 5.6
pCTM~ 0.995 7.5 0.056 0.6 <1073 57 0.015 14.7
I pCTM™ + Arg52 0.759 8.6 <1073 14.1 0.053 18.6
I I+ Cys69 0.924 6.9 0.003 14.9 0.107 17.8
111 I + Phe62 + Phe96 0.338 12.7 <1073 13.9 0.052 18.2
v 1+ Thr50 + Val66 + Tyr98 0.559 10.9 0.347 12.5
v I+ Tyr42 + Glu46 1.074 11.0
VI IV + Tyr42 + Glud6 1.012 11.2
VII VI + Cys69 1.073 11.6

Figure 3. (a—e) Patterns of the principal highest occupied and lowest
unoccupied (virtual) molecular orbitals of the deprotonated chromophore
(pCTM"); (f) pattern of the lowest unoccupied molecular orbital of complex
I (pCTM™ + Arg52). Note that the orbital patterns of the s and 7} orbitals
differ from those of the neutral chromophore (see Figure 1 of ref 18). In
particular, the 7} orbital is no longer localized on the double bond
conjugated with the aromatic ring.

eration depend on the chromophore’s environment. The » and
npp MOs essentially correspond to lone pairs, with the » orbital
relating to the carbonyl oxygen lone pair with a contribution
from the 3p atomic orbitals of sulfur, while the np, orbital
corresponds to the lone pair of the phenolic oxygen.

The results presented in the diagram were obtained throughout
from CC2 calculations. For pCTM, pCTM™, and complex I,
we also carried out EOM-CCSD calculations. This allowed us
to assess the quality of the CC2 method in describing the excited
states under consideration. A comparison of the CC2 and EOM-
CCSD data obtained for those three systems shows that the CC2
method correctly describes the m—xn), 7—x5, n—x;, and
—Arg52 excited states, with deviations from the EOM-CCSD
energies that are not larger than about 0.3 eV for the 7—7 and
—7; states, 0.1 eV for the n—a] state, and 0.4 eV for the
m—Arg52 state. The EOM-CCSD energies are always higher
than the CC2 values (explicit values of the excitation energies
under consideration can be found in table SM2 of the Supporting
Information).

The npp—7} excited state is a particular case: Here, the CC2
method was found to substantially underestimate the excitation
energy, with a deviation of about 1 eV from the EOM-CCSD
result. A possible reason for this poor agreement is the more
complicated electronic structure of the nph—ﬂT state and, in
particular, the somewhat higher weight of doubly excited



E.g., calculations for the anionic PYP chromophore

Elecironic Siruchure of the PYP Chromophore ARTICLES

Table 1. CC2 Calculated Properties for the =—x., x—x,, n—a), fen—x), and 7—Arg52 Excited States in the Different Chromophore +
Amino Acid(s) Supermolacular Complaxas: Oscillator Strengths f{au] Change in the Pemanent Dipole Moment under Transition to the
Excited State, |Ax| (Debye)

- A3 iz Mgy = A-Arghl
mialecuder systemicomplex f I | F [Faf] F || f || f | At
pCTM 0867 58 (b s 0.7 ol 56
pUTM~ {19495 e (056 1.6 < |3 Sl (5 4.7
| pUTM™ + Args2 0.75%9 L =3 4.1 (053 18.6
1l 1 + Cys6S 0924 EI' b, (013 14.9 0107 17.8
I I + Phet2 + Phels 0,328 i2. = -3 1349 052 182
i I + Thrs + Valde — Tyrds 0555 l[l'.':]' 0.347 125
v I+ Tyrd42 + Gluds 1.074 L1.0y
VI IV =+ Tyrd2 + Gludh 1.012 il.2
Vil W1+ Cysod 1.073 1.6




2. Vibronically allowed transitions

Vibronic Coupling _~C
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e formaldehyde: the Sy — S;(n — ©*) transition is electronically forbidden
— but becomes allowed through vibronic coupling
e the out-of-plane bending mode acts as a symmetry-breaking mode



Vibronically allowed transitions

e expand the electronic Hamiltonian in a Taylor expansion with respect
to nuclear displacements:

H=H®O 4 Z(gg)on +

e The second term is a perturbation that mixes the electronic eigen-
functions:

¢ — '(pe’ _I_ Z ce¢e Ce

_ (A XOH/0Ql Qi _ 5~
e#e’ g

E. — E.
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e Dipole transition moment, e.g., from the ground state (€’)

peren = (€|ple”) + Y ct(elple”)
e#e€’

“Intensity borrowing” due to vibronic coupling

NB. The perturbation matrix elements are non-zero if
. /
I'e) @ I'® ® I'(¢) contains the totally symmetric representation

11



Symmetry considerations

Objective (in our context): use molecular symmetry to determine whether
perturbation matrix elements, or transition dipole moments are zero or
not (i.e., is the transition dipole-allowed, or vibronically allowed, or neither
of the two?)

More generally: consider a matrix element

(alQ]b) = [ dryp; Qe

determine the symmetry of the wavefunctions and operators within the
molecular point group and decide if the integral can be non-zero

12



Or, even more generally, consider an integral over a product of functions
I=[dr f(l)*f(l')f(l”)

where [, I/, I’ label different symmetries within a point group

The integrand has to be “totally symmetric” overall to have I # 0

N‘h
e
N‘h
~~

Fig.5.1 The integral over

a symmetric range of the
product of a symmetric and
antisymmetric function

(f> and f;, respectively) is zero.

13



General procedure

e assign a point group to the molecule in question
e with regard to an integral I = [dr fO*f@ ") determine the
symmetry of the individual functions with respect to the point group in

question

e determine whether the symmetry of the product corresponds to the
“totally symmetric” representation

14



Example: Benzene (Dg),)

4Energy three important bands in the UV:

185 nm — symmetry-allowed, intense
200 nm — symmetry-forbidden, weak
260 nm — symmetry-forbidden, weak

ground state: G(*A4,,)

electric dipole operator:
A2u(z) + Elu(ma y)

allowed transitions:
E, +— 1Alg (185 nm)
1A2u < 1Alg

forbidden (but weak) transitions:
1B1u < 1Alg (200 nm)
1B2u < 1Alg (260 nm)

15




Product table for Dgp point group

A1g A29 B1g BZg E1g EZg A1u|A2u|B1u|B2u E1u E2y
A1g|A1g|A2g|B1g|B2g E1g Eog A1u|A2u|B1u|Bau E1u E2u
A29 A2g A1g BZg B1g E1g E2g Aoy |A1u|Bau|B1uy Equ Eou
B1g B1g B2g A1g AZg EZg E1g B1u|Bou|A1u|A2u Eoy E1u
BZg BZg B1g A2g A1g E2g E1g Bou|B1u|A2u|A1u Eou Equ
E1g|E1g|E1g|E2g|E2g|A1gtA2gtE2g|B1gtBagtE1g|E1u|E1u| E2u | E2u [A1utA2utEou|B1utBautEqy
Ezg|E2g|E2g|E1g|E1g|B1gtBogtE1g|A1gtA2gtEag| Eou | Eou|E1u|E1u|B1utBoutE1u [A1utAoutEgy
A1u|A1u|A2u|B1u|Bau Equ Eou A1g A2g B1g BZg E1g E2g
Azy|A2y|A1u|Bau|B1y E1y Eou AZg A1g BZg B1g E1g EZg
B1u|B1u|B2u|A1u|A2u = Equ B1g BZg A1g A2g E2g E1g
B2u |[B2u|B1u|A2u|A1u = Equ BZg B1g AZg A1g E2g E1g
E1u|E1u|E1u|E2u|E2u |A1utAoutEoy | B1utBoutEqu |E1g |E1g | E2g|E2g|A1gtA2gtEag|B1gtBogtElg
E2u | E2u|E2u |E1u|Equ|B1utBoutE1u|AtutAoutEoy| Exg | Eog|E1g|E1g |B1gtBagtEig|A1gtAzgtEag

e for a matrix element (v;|fi|1)2), check whether the direct product

I'y, ', ® 'y, contains the totally symmetric representation A,
16



Character table for point group Den

(xaxis coincident with C'> axis)

Don € (205 )| 203 G2 |32 367 |1 [253 256 | ) 304 |30, | oarenctons. | quedreti | auble
Aqg [+1 [+1 +1 |+1 [+1  [+1 +1 |+1 [+1 |+ +1 |+ |- X2+y2122 -

Aog [+1 |+1 +1 [+ (-1 -1 [+ [+ |+ 11 |Re - -

Big |+1 [-1 +1 -1 [+ [ +1 -1 |+1 |1 +1 -1 |- - -

Bog [+1 [-1 +1 -1 |1 +1 [+ -1 [+ |1 1 [+ |- - -

E1g [+2 [+1 -1 (20 |0 +2 [+1 [-1 |2 0 |0 |(RxRy) 0z yz) |-

Eag [+2 |-1 1 (#2100 (0 #2110 (42 o (0 |- 0C-y2, %) |-

Ay [+1 [+1 +1 [+ [+ |+ |- (1 [ 1 |- - -

Agy |+1 | +1 +1 [+ |1 |1 |11 -1 [ +1 [+1 |z - 2, 20¢+y)

Biu [+1 |-1 +1 -1 |[+1 |1 ST S T I I P 4|+ |- - X(-3y°)

Bou |+1 |-1 +1 |1+ [+ [ [+ +1 -1 - - V(35%-yP)

Eru |+2 [+1 4 |2 00 [0 |2 |1 |+1 [+2 0 |0 |y - 02, y22) IXOC+YP), YOC+YP)]
Eou [+2 |1 1 [+2 (0 [0 |2 [+#1 |+1 |2 0 [0 |- - [xyz, Z0C-YP)]

Additional information

Number of synmetry elements

Number of irreducible representations




Symmetry operations

Symmetry operations = operations that leave the object (molecule)
apparently unchanged

The ensemble of symmetry operations for a given molecule define the
point group.

18



Symmetry operations and symmetry elements

E = identity — the symmetry element is the object itself
C,, = n-fold rotation — the symmetry element is the axis of rotation

o = reflection — the symmetry element is the mirror plane
(0w, on, 0q = vertical, horizontal, dihedral plane)

1 = inversion — the symmetry element is the inversion center

S» = mn-fold improper rotation (“rotary-reflection”) = rotation +

horizontal reflection

19



Group property

The set of symmetry operations of an object (e.g., a molecule) constitute
a group in a mathematical sense:

1. The identity is a symmetry operation

2. Symmetry operations combine in accord with the associative law of
multiplication

3. If R and S are symmetry operations, then RS is also a symmetry
operation

4. The inverse of each symmetry operation is also a symmetry operation

20



Molecule

|

Linear?

O

o%&

Select C, with the highest n,
then ask is nC, perpendlcular

V

Identifying point groups

Two or
more C,
n>2?

What is the point group of benzene, C;H,?

Method Use the flow chart given in Fig. 5.17, recognizing that benzene has a unique
C, principal axis that is perpendicular to the molecular plane.

Answer Benzene, a non-linear molecule, does not contain two (or more) principal
axes: Cq is a unique principal axis and there are six C, axes in the molecular plane
and perpendicular to Cy; three axes intersect carbon atoms on opposite vertices
and three axes bisect carbon—carbon bonds on opposite edges. The molecular
plane is 6,. From Fig. 5.17, the point group is Dy,

21



Group multiplication tables

Table 5.2 The C,, group multiplication table

First: E Cs = o, o, c.
Second:

E E 3 G o, < oy
c : C; E o ; o,
{3 oy E i ol o, o,
o, o, o . E G 3
o, o, o, 4 €3 E Cx
oy oy o, o, G s &

22



Matrix representations

Choose a basis, e.g., the s orbitals of NH3: (s,,,54, 8B, sc)

Table 5.3 The matrix representation of C;, in the basis {sy,s,,Sg,Sc}

D(E) D(C3) D(C5)
1000 1 000 1000
0100 0001 0010
0010 0100 0001
0001 0010 0100
x(E)=4 2(C3) =1 2(C3)=1
D(a,) D(o,) D(oy)
1000 1000 1 00 0].
0100 0010 0001
0001 0100 0010
0010 0001 0100
xlo) =2 xloy) =2 xloy) =2

The matrix representatives multiply in exactly the same way as the

symmetry operations

23



Irreducible representations (“irreps”)

Apply similarity transformations to reduce a given matrix representation
to a block-diagonal, “irreducible” form

2V £ 2 4

“character” (trace) is invariant:

X(R) = > ; Dii(R)

x(R) = >, aixV(R)

determine coefficients:

ar = 1/h 3" p xV*(R)x(R)

24



Similarity transformations: NH;

Choose a new basis, e.g., linear combinations of the s orbitals of NHj:

SN = SN

S1 = SA + SB + Sc
Sy = 284 — SB — SC
S3 — Sp — SC

Table 5.4 The matrix representation of C;, in the basis {s\,$,,5,,5;}

D(E)

1 0 0
0 1 0
0 0 1
0 0 O

—_0 0 O
i,

D(C3)
10 0

D(C3)

| S O SR  NR ()
01 0 0
0 0 -3 3
00 -3 -1
x(Cs) =1
D(c?)

1 0 0 O
0 1 0 0
00 -3 -3
ol Rl
x(o7)=2

Obtain a block-diagonal representation!

25



Irreducible representations: character tables

Table 5.5 The C;, character
table

A, 1 1 1
A, 1 1 =
E 2 -3 0

A, B: symmetry species of one-dimensional irreps
E: two-dimensional irreps

T: three-dimensional irreps



Molecular Orbitals of NH; (C5,)

NH, (Cs,: E, 2C5, 36,)

I, = 3E+0C;+0,=A, + E

Cs, |E 2C; 3o,

Ap |11 1 |z R 22
, |11 -1

E (2 -1 0 |[(xy)

-170eV

1e
o aq (2S+ ‘§
-25.6 eV N
-31.0eV + %

S{ + So + S3

symmetry adapted
linear
combinations
(SALC) of three 1s
orbitals can be
found with help of
the "projection
operator”
technique (F.A.
Cotton, p. 114)




Energy

25 (a,)

Molecular Orbital Theory

: 3 node
[ ]
X y (Y
” ’ *
L .

00 -9

LGO(2) LGO(3)
\“} Representation of the HOMO (a,)
LGO(1)
H g Representation of one of the ¢ MOs
H

Representation of the lowest lying a, MO

28




2e

3a,

2a,

1e

Molecular Orbital Theory —

>

* &

,

<

®
¢ i
.

T /\ﬁew from below
. lone pair on N

1a,

11

® o
N-H
. bonding

orbitals

16 eV |11 eV
N NH, Hy
3a,
/ E’\
il .
fi::f * 2e \‘5\5
/ ' &
£ A | 2a; E
2s j oAl /
'ﬁ\ \ f; ;
\'lI \ A_A 1e ;"f [
| /
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Which irreps are spanned by a reducible
representation?

I1red — Z alr(l)
l

a = XU (RX(R)

h = order of the group
R = symmetry operation
' = symmetry species of the irreducible representation

X = character of the (reducible or irreducible) representation

30



How to use projection operators to generate
symmetry-adapted bases

For a given basis { f;}, apply projection operators as follows:

d
Op — 2 O(RY*R
P i hERx() fi

h = order of the group

d; = dimension of the irrep

R = symmetry operation

' = symmetry species of the irreducible representation

x = character of the (reducible or irreducible) representation .



Symmetry properties of functions

Table 5.7 The matrix representation of C,, in the basis (x,y,2)

D(E) D(C3)

10 0 -1 13 0
010 13 -1 o
00 1 o 0 1
2(E)=3 2(C3)=0 2(C3)=0
L D(s,) D(c’)
—Yax + ¥a\3y,
100 I 48 o0
010 13 4 0
0 0 1 o o0 1
-sz—"i;les; x(o,)=1 xlon)=1
y
x (z,y,2) span A; + FE

: I
“Yax - ¥o\3y by + %\3x



C3'U! again

TABLE V: Character Table for the C3, Group

Ay +1 +1 +1 z 22, 2% + 42
Ag +1 +1 -1
E +2 -1 0 (xay) (xz, z? — yZ), (a:z, yz)

e determine symmetry of dipole operator from x, y, z entries



