Theoretical Photochemistry WiSe 2017/18

Lecture 13

Irene Burghardt (burghardt@chemie.uni-frankfurt.de)

 $http://www.theochem.uni-frankfurt.de/teaching/ \longrightarrow Theoretical Photochemistry$

Topics

- **1. Photophysical Processes**
- 2. The Born-Oppenheimer approximation
- 3. Wavepackets
- 4. Beyond Born-Oppenheimer non-adiabatic transitions
- 5. The Franck-Condon picture of electronic transitions
- 6. Interaction with light & what do we measure experimentally?
- 7. Conical intersections
- 8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene
- 9. Some electronic structure aspects
- **10.** Dynamics: trajectories or wavefunctions?
- 11. Wavefunction propagation techniques

- 12. Trajectory surface hopping techniques
- 13. Non-linear optical spectroscopy: calculation of spectroscopic signals
- 14. Extended systems: Excitons, light-harvesting, etc.
- 15. Spin-orbit coupling

Photochemical Pathways

Spin-Orbit Coupling

The spin-orbit interaction operator

$$\hat{H}_{
m SO} = \sum_{i} \xi_{i} \; \hat{l}_{i} \cdot \hat{s}_{i}$$

- can mix states of different multiplicity (e.g., singlet/triplet)
- "intersystem crossing"

El Sayed's rule

Intersystem crossing is likely to be very slow unless it involves a change of orbital configuration

El Sayed's	rule,	cont'd
------------	-------	--------

Compound	Transition	A/F	$10^{-8} k_{isc} / s^{-1}$
Benzophenone	$S_1(n,\pi^*) \longrightarrow T_1(\pi,\pi^*)$	А	1000
9-acetoanthracene	$S_1(\pi,\pi^*) \longrightarrow T_1(n,\pi^*)$	А	100
Anthracene	$S_1(\pi,\pi^*) \longrightarrow T_1(\pi,\pi^*)$	F	1
Acetone	$S_1(n,\pi^*) \longrightarrow T_1(n,\pi^*)$	F	5
Biacetyl	$S_1(n,\pi^*) \longrightarrow T_1(n,\pi^*)$	F	0.7

These examples show the gradation in k_{ISC} in going from "allowed" to "forbidden" (on El Sayed's rules) situations. Heavy atom substituents (and solvents) greatly enhance spin-orbit coupling and thence k_{ISC} .

Compound	$10^{-6}k(S_1 \longrightarrow T_1)/s^{-1}$	$k(T_1 \longrightarrow S_0)/s^{-1}$
Naphthalene	1.6	0.4
1-methylnaphthalene	0.5	0.34
1-chloronaphthalene	49	2.4
1-bromonaphthalene	1850	36
1-iodonaphthalene	>6000	310

All above k values measured at 77° K.

"Allowed" spin-forbidden transitions: benzaldehyde

Example: benzaldehyde

- ISC = intersystem crossing
- IC = internal conversion
- CI = conical intersection

- ISC time scale: $\sim 10^{-9}$ s ("untypically" fast!)
- phosphoresence lifetime $\sim 2 imes 10^{-3} \ {
 m s}$

Transition metal complexes: Myoglobin

Science 350, 445 (2015)

Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation

Thomas R. M. Barends,^{1*} Lutz Foucar,¹ Albert Ardevol,² Karol Nass,¹ Andrew Aquila,³ Sabine Botha,¹ R. Bruce Doak,¹ Konstantin Falahati,⁴ Elisabeth Hartmann,¹ Mario Hilpert,¹ Marcel Heinz,^{2,4} Matthias C. Hoffmann,⁵ Jürgen Köfinger,² Jason E. Koglin,⁵ Gabriela Kovacsova,¹ Mengning Liang,⁵ Despina Milathianaki,⁵ Henrik T. Lemke,⁵ Jochen Reinstein,¹ Christopher M. Roome,¹ Robert L. Shoeman,¹ Garth J. Williams,⁵ Irene Burghardt,⁴ Gerhard Hummer,² Sébastien Boutet,⁵ Ilme Schlichting^{1*}

Transition metal complexes: Heme complex

- ultrafast dynamics (several hundred femtoseconds)
- combined effects of spin-orbit coupling and vibronic coupling

Falahati, Tamura, Burghardt, Huix-Rotllant, https://arxiv.org/abs/1709.03402

TADF: Thermally Activated Delayed Fluorescence

• Interaction between the magnetic moments associated with the orbital angular momentum and the electron spin:

$$\hat{\mu}_e = -rac{e}{2m_e} \hat{l} \equiv \gamma_e \, \hat{l}$$

$$\hat{\mu}_s = -g_s rac{e}{2m_e} \hat{s} \equiv \gamma_e \, \hat{s}$$

- γ_e = magnetogyric ratio - g_s = 2.0023 Landé factor (from a relativistic treatment)

Note that the orbital magnetic moment $\hat{\mu}_e$ generates a magnetic field that interacts with the spin magnetic moment (or vice versa)

We formulate the interaction as follows:

$$\hat{H}_{\rm SO} = -\hat{\mu}_s \cdot \hat{B}_l$$

where

$$\hat{B}_l = rac{1}{2} imes rac{Ze\mu_0}{4\pi r^3 m_e} \hat{l}$$

where the factor 1/2 comes from a relativistic treatment ("Thomas factor") as compared with the classical Biot-Savart law, and $\mu_0 = (c^2 \epsilon_0)$.

We now get for the SO interaction:

$$\hat{H}_{\mathrm{SO}} = -\hat{\mu}_s \cdot \hat{B}_l = rac{g_s e}{2m_e} \hat{s} \cdot \hat{B}_l \sim rac{e}{m_e} \hat{s} \cdot \hat{B}_l$$

and when inserting the explicit expression for \hat{B}_l :

$$\hat{H}_{
m SO} = rac{Z e^2 \mu_0}{8 \pi m_e^2 r^3} ig(\hat{s} \cdot \hat{l} ig) \equiv \xi(r) ig(\hat{s} \cdot \hat{l} ig)$$

• $\xi(r)$ is the spin-orbit coupling "constant"

For hydrogenic atoms, evaluate the spin-orbit coupling "constant" $\xi(r)$ as follows:

$$egin{aligned} &\langle \xi(r)
angle &= rac{Z e^2 \mu_0}{8 \pi m_e^2} \langle rac{1}{r^3}
angle &= &rac{Z e^2 \mu_0}{8 \pi m_e^2} \Big(rac{Z^3}{n^3 a_0^3 l (l + rac{1}{2}) (l + 1)} ight) \ &= &rac{Z^4 e^2 \mu_0}{8 \pi m_e^2 n^3 a_0^3 l (l + rac{1}{2}) (l + 1)} \end{aligned}$$

$$\hat{H}_{
m SO} = \langle \xi(r)
angle \left(\hat{s} \cdot \hat{l}
ight) = rac{Z^4 e^2 \mu_0}{8 \pi m_e^2 n^3 a_0^3 l(l + rac{1}{2})(l + 1)} \left(\hat{s} \cdot \hat{l}
ight)$$

Let's check this for a two-electron wavefunction (before taking the average $\langle \xi(r) \rangle$):

$$\hat{H}_{
m SO} \propto \sum_{I} rac{Z_{I}}{r_{1I}^{3}} \hat{l}(1) \cdot \hat{s}(1) + \sum_{I} rac{Z_{I}}{r_{1I}^{3}} \hat{l}(2) \cdot \hat{s}(2)$$

Here,

$$\hat{l}(1) \cdot \hat{s}(1) = \hat{l}_x(1)\hat{s}_x(1) + \hat{l}_y(1)\hat{s}_y(1) + \hat{l}_z(1)\hat{s}_z(1)$$

- due to the $1/r^3$ dependence, the spin-orbit interaction decays rapidly at a given atomic center

Now consider a typical matrix element, e.g., for an $(\pi \pi^*) - (n\pi^*)$ transition:

 $\langle \pi(1)\pi^*(2)|\langle lpha(1)eta(2)-eta(1)lpha(2)|\hat{H}_{
m SO}|lpha(1)eta(2)+eta(1)lpha(2)
angle|n(1)\pi^*(2)
angle$

 $\sim \langle \pi(1)\pi^*(2)|\hat{l}(1)|n(1)\pi^*(2)
angle \langle lpha(1)eta(2)-eta(1)lpha(2)|\hat{s}(1)|lpha(1)eta(2)+eta(1)lpha(2)
angle$

 $| = \langle \pi(1) | \hat{l}(1) | n(1)
angle \langle lpha(1) eta(2) - eta(1) lpha(2) | \hat{s}(1) | lpha(1) eta(2) + eta(1) lpha(2)
angle$

In this case , it turns out that $\langle \pi(1)|\hat{l}_z(1)|n(1)\rangle \neq 0$ since the \hat{l}_z operator couples the orthogonal p orbitals contributing to the π vs. n orbitals.

At the same time, the corresponding spin matrix element is non-zero: $\langle \alpha(1)\beta(2) - \beta(1)\alpha(2)|\hat{s}_z(1)|\alpha(1)\beta(2) + \beta(1)\alpha(2)\rangle \neq 0.$

SO allowed/forbidden transitions

(a) carbonyl (C=O) group: $\pi^* \leftarrow n$ transition is SO allowed

$$egin{aligned} n &\sim O2p_y \ \psi_{\pi^*} &= c'\chi(C2p_x) + c\chi(O2p_x) \end{aligned}$$

$$\langle \pi^* | \hat{l} | n
angle \sim c \langle O p_x | \hat{l} | O p_y
angle
eq 0$$

(b) ethene: $\pi^* \leftarrow \pi$ transition is **SO** forbidden

How to do the dynamics?

• Fermi's Golden Rule:

$$\Gamma_{a o b} = rac{2\pi}{\hbar} |\langle \psi_b^{(0)} | \hat{H}_{SO} | \psi_a^{(0)}
angle|^2 \; \delta(E_b^0 - E_a^0)$$

- mixed SO/vibronic version of Fermi's Golden Rule
- wavepacket dynamics (especially for short time scales)