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Topics

1. Photophysical Processes

2. The Born-Oppenheimer approximation

3. Wavepackets

4. Beyond Born-Oppenheimer – non-adiabatic transitions

5. The Franck-Condon picture of electronic transitions

6. Selection rules

7. What do we measure experimentally?

8. Conical intersections

9. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

10. Some electronic structure aspects

11. Dynamics: trajectories or wavefunctions?
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12. Wavefunction propagation techniques

13. Trajectory surface hopping techniques

14. Non-linear optical spectroscopy: calculation of spectroscopic signals

15. Extended systems: Excitons, light-harvesting, etc.

16. Solvent/environmental effects
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Introduction

1. Electronic excitation and what follows

2. What can we see experimentally?

3. Wavepackets

4. Born-Oppenheimer & beyond

5. What do we need to calculate?

5



Vibronic (=vibrational-electronic) state picture:
Jablonski diagram
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Vibronic (=vibrational-electronic) state picture
+ potential energy surfaces (PES)

excited state

ground state
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Photochemical dynamics:
potential energy surface (PES) picture

Example: benzaldehyde

ISC = intersystem crossing

IC = internal conversion

CI = conical intersection

• ISC time scale:
∼ 10−9 s (“untypically” fast!)

• phosphoresence lifetime
∼ 2× 10−3 s
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Radiationless return to the ground state

• e.g., excited-state lifetime of anthra-
cene ∼ 10−13 s – ultrafast!

• by contrast, S1 lifetime of pyrene is ∼
10−6 s – here, deactivation occurs by
fluorescence and intersystem crossing
(S → T )

• Kasha’s Rule: luminescence observed
exclusively from lowest excited state
(S1)

• intersystem crossing (S → T ): typical
time scale ∼ 10−7-10−11 s
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Conical intersections (CoIn’s)
as landmark topology

• Conical intersection topologies
are highly anharmonic

• Extreme breakdown of the
Born-Oppenheimer approximation

• The electronic decay at a CoIn is ultrafast
(femtosecond to picosecond scale)

• CoIn’s are ubiquitous (Truhlar/Mead:
“Principle of non-rareness of CoIn’s”)

• Polyatomic molecules; Jahn-Teller
effect in solids

CoIn =
photochemical
funnel

adapted from: Schultz et al., J. Am. Chem. Soc. 125, 8098 (2003)
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Ultrafast photo-isomerization of retinal

S. Hahn and G. Stock, J. Phys. Chem. B 104, 1146 (2000).

• primary process of vision

• relevant coordinates: twist + skeletal stretch + . . .

• excited-state decay in the protein: ∼ 200 fs / in solution phase: ∼ 5 ps
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Introduction

1. Electronic excitation and what follows

2. What can we see experimentally?

3. Wavepackets

4. Born-Oppenheimer & beyond

5. What do we need to calculate?
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Franck-Condon absorption spectrum

• transitions between quantized vibronic states
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Time-resolved Spectroscopy

pump

probe

• e.g., pump-probe spectroscopy: sequence of ultrashort (∼ 10-50 fs)
UV/Vis pulses

• vary the time delay between the pulses 14



Watching the dissociation of ICN

Pump-probe spectroscopy:

ICN∗ −→ I + CN

(Zewail & co (1987))

• dissociation described by
outgoing wavepacket
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Franck-Condon transition – wavepacket picture
po

te
nt

ia
l

molecular coordinate

∧

hν

ground-state wavefunction:

|ψ(0)(x, t0)〉 = χ
(0)
G (x, t0)|G〉

act with the dipole moment operator on ψ(0):

µ̂|ψ(0)〉 = µEG(|E〉〈G|+ |G〉〈E|)|ψ(0)〉

= µEG χ
(0)
G (x, t0)|E〉

≡ |ΦE(x, t0)〉 (1)

|ΦE(x, t)〉 = excited-state wavepacket

non-stationary state!
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3. Wavepackets
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Quantum dynamics – basics

• Wavepackets correspond to coherent superposition states

Ψ(x, t) =
∑
n

anϕn(x)exp

(
−
i

h̄
Ent

)

• For example, for a harmonic oscillator:

ϕn(x) = NnHn(y)exp(−y2
/2) ; y = (mω/h̄)

1/2
x ; Nn = (1/2

n
n!π

1/2
)

1/2

En = h̄ω(n + 1/2)

• For a given eigenstate ϕn, all observables are independent of time (i.e.,
the state is stationary)

• A coherent superposition of at least two eigenstates is required to
observe a time dependence of the observables, e.g., 〈x〉(t).
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Quantum dynamics – basics / cont’d

• The time evolution of the wavepacket Ψ(x, t) is given in terms of the
time-dependent Schrödinger equation (TDSE):

ih̄
∂Ψ

∂t
= ĤΨ =

(
−
h̄2

2m

∂2

∂x2
+ V (x)

)
Ψ

• Particular solution, for eigenstates:

Ψ(x, t) = ϕn(x)exp
(
−
i

h̄
Ent

)
• Examples which allow for analytical solutions: particle-in-a-box, free
particle wavepacket, Gaussian wavepackets

• In general, we need to integrate the time-dependent Schrödinger
equation numerically – in that case, the knowledge of the eigenstates
is not necessary 19



Eigenstate solution: “separation of variables”

• assume that solutions of the TDSE exist which can be written in product
form,

Ψ(x, t) = ψ(x)χ(t)

• such that ∂Ψ/∂t = χ̇(t)ψ(x), and

ih̄
χ̇(t)

χ(t)
=

(− h̄2

2m
∇2 + V )ψ(x)

ψ(x)

• since the l.h.s. is only a function of t and the r.h.s. is only a function of
x, both must be equal to the same constant, E. Therefore,

ih̄χ̇(t) = Eχ(t)

(−
h̄2

2m
∇2 + V )ψ(x) = Eψ(x)

• The first equation can be integrated to give χ(t) = χ0 exp(−iEt/h̄)
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Superposition states & time-dependent observables

• First, use the particular solution Ψ(x, t) = ψE(x)exp(−iEt/h̄) to
calculate time-dependent expectation values, e.g.,

〈x〉t =

∫
dxΨ∗(x, t)xΨ(x, t) =

∫
dxψ∗E(x)eiEt/h̄ xψE(x)e−iEt/h̄

=

∫
dxψ∗E(x)xψE(x) no time-dependence!

• Next, try a linear combination:

Ψ(x, t) = aψE(x)exp(−iEt/h̄) + b ψE′(x)exp(−iE′t/h̄)

〈x〉t = |a|2
∫
dx x |ψE(x)|2 + |b|2

∫
dx x |ψE′(x)|2

+2Re(a∗b)

∫
dx xψ∗E(x)ψE′(x)e−i(E

′−E)t/h̄

The time dependence is in the interference term!
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Wavepackets = most general TDSE solutions

• As we have seen, a coherent superposition of eigenstates (= wavepacket)
is required in order to have time dependence in any observable

• The general solution of the TDSE thus reads as follows:

Ψ(x, t) =

∞∑
n=1

anψn(x)exp
(
−
i

h̄
Ent

)
(discrete spectrum)

– where (ψn(x), En) are obtained by solving the time-independent SE

– the an’s are obtained from the initial condition: an =
∫
dxψ∗n(x)Ψ(x, 0)

• For a continuous spectrum, we get analogously:

Ψ(x, t) =

∫ ∞
0

dE a(E)ψE(x) exp
(
−
i

h̄
Et
)

(continuous spectrum)
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Gaussian wavepacket in a harmonic potential

• Ĥ = −
h̄2

2m

∂2

∂x2
+

1

2
kx2 k = mω2

• time-evolving wavepacket:

Ψ(x, t) =
∑
n

anϕn(x) exp
(
−
i

h̄
h̄ω(n+ 1/2)t

)
• wavepacket at time t = mT
where T = 2π/ω is the classical period:

Ψ(x, t = mT ) =
∑
n

anϕn(x) exp
(
−
i

h̄
h̄ω(n+ 1/2)mT

)
= exp(−i2πm(n+ 1/2))Ψ(x, 0) = (−1)mΨ(x, 0)

• the wavepacket oscillates with the classical period T !
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Introduction

1. Electronic excitation and what follows

2. What can we see experimentally?

3. Wavepackets

4. Born-Oppenheimer & beyond next lecture!

5. What do we need to calculate?
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What do we need to calculate?

(1) Franck-Condon excitation & beyond:

• Franck-Condon wavepackets
• transition dipole moment, oscillator strength
• absorption spectra, nonlinear optical spectroscopy . . .

(2) PES’s from electronic structure calculations:

• calculate Potential Energy Surfaces (PES)
• calculate non-adiabatic couplings
• possibly “diabatize” (= transform to a diabatic representation)

(3) Dynamics (once the PES’s are known):

• wavepacket simulations on non-adiabatically coupled PES’s
• or simplified descriptions of the dynamics: classical trajectories, Gaussian

wavepackets
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