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Topics

Photophysical Processes

. The Born-Oppenheimer approximation

. Wavepackets

Beyond Born-Oppenheimer — non-adiabatic transitions

. The Franck-Condon picture of electronic transitions
. Selection rules

. What do we measure experimentally?

Conical intersections

Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

. Some electronic structure aspects

. Dynamics: trajectories or wavefunctions?



12.
13.
14.
15.
16.

Wavefunction propagation techniques

Trajectory surface hopping techniques

Non-linear optical spectroscopy: calculation of spectroscopic signals
Extended systems: Excitons, light-harvesting, etc.

Solvent/environmental effects
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Introduction

Electronic excitation and what follows

What can we see experimentally?

. Wavepackets

Born-Oppenheimer & beyond

What do we need to calculate?



Vibronic (=vibrational-electronic) state picture:
Jablonski diagram
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Vibronic (=vibrational-electronic) state picture
+ potential energy surfaces (PES)

J = excited state
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Photochemical dynamics:
potential energy surface (PES) picture

Example: benzaldehyde

S,
T, ISC ISC = intersystem crossing
via ClI T, . .
IC = internal conversion
Cl = conical intersection
Absorption Phosphorescence
So e ISC time scale:
~ 1077 s (“untypically” fast!)
e phosphoresence lifetime

~2x1073s



Potential
Energy

A

Radiationless return to the ground state

Product

e.g., excited-state lifetime of anthra-
cene ~ 10713 s — ultrafast!

by contrast, S; lifetime of pyrene is ~
10~% s — here, deactivation occurs by

fluorescence and intersystem crossing
(S —>1T)

Kasha’s Rule: luminescence observed
exclusively from lowest excited state

(51)

intersystem crossing (S — T'): typical
time scale ~ 10=7-10—!! s



Conical intersections (Coln’s)
as landmark topology

Coln =
photochemical
funnel

adapted from: Schultz et al., J. Am. Chem. Soc. 125, 8098 (2003)

Conical intersection topologies
are highly anharmonic

Extreme breakdown of the
Born-Oppenheimer approximation

The electronic decay at a Coln is ultrafast
(femtosecond to picosecond scale)

Coln’s are ubiquitous (Truhlar/Mead:
“Principle of non-rareness of Coln’s”)

Polyatomic molecules; Jahn-Teller
effect in solids
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Ultrafast photo-isomerization of retinal

RN

trans

S. Hahn and G. Stock, J. Phys. Chem. B 104, 1146 (2000).

e primary process of vision

e relevant coordinates: twist + skeletal stretch + . ..
11

o excited-state decay in the protein: ~ 200 fs / in solution phase: ~ 5 ps
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Franck-Condon absorption spectrum
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e transitions between quantized vibronic states
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Time-resolved Spectroscopy

potential

molecular coordinate

e e.g., pump-probe spectroscopy: sequence of ultrashort (~ 10-50 fs)
UV /Vis pulses

e vary the time delay between the pulses

14



Watching the dissociation of ICN
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Figure 14. Femtochemistry of the ICN reaction, the first to be studied. The experimental results
show the probing of the reaction in the transition state region (rise and decay) and the final CN
fragment (rise and leveling) with precise clocking of the process; the total time is 200 fs. The I
fragment was also detected to elucidate the translational energy change with time. Classical and
quantum calculations are shown (see text). [Ref. B, B4, B6, B14, B16, B18, B19, B28, 55]

Pump-probe spectroscopy:
ICN* — | + CN
(Zewail & co (1987))

e dissociation described by
outgoing wavepacket

15



potential

Franck-Condon transition — wavepacket picture

molecular coordinate

ground-state wavefunction:
%O (@, to)) = x& (, t0)|G)

act with the dipole moment operator on (9:

alp®) = pec(IEY{G|+ |G)E|)|$?)
pEG X (2, t0)| E)
= |®e(z, 1))

|PE(x,t)) = excited-state wavepacket

non-stationary state!
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Quantum dynamics — basics

e Wavepackets correspond to coherent superposition states
7
V(x,t) = zn: anpn(x)exp (—EEnt>

e For example, for a harmonic oscillator:

pn(x) = Nan(y)exp(—y2/2) : ’yZ(mw/h)l/za: : Nn:(l/znn!ﬂ_l/2)1/2
E, = hwn+4+1/2)

e For a given eigenstate ¢,,, all observables are independent of time (i.e.,
the state is stationary)

e A coherent superposition of at least two eigenstates is required to
observe a time dependence of the observables, e.g., (x)(t).
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Quantum dynamics — basics / cont’d

e The time evolution of the wavepacket ¥ (x,t) is given in terms of the
time-dependent Schrodinger equation (TDSE):

or . h? 02
(_

h— = HWY = VvV |
’ ot 2m Ox2 + (:13))

e Particular solution, for eigenstates:
1
U(x,t) = gon(:c)exp(—EEnt)

e Examples which allow for analytical solutions: particle-in-a-box, free
particle wavepacket, Gaussian wavepackets

e In general, we need to integrate the time-dependent Schrodinger
equation numerically — in that case, the knowledge of the eigenstates
is not necessary +



Eigenstate solution: “separation of variables”

e assume that solutions of the TDSE exist which can be written in product
form,

¥(x,t) = p(x)x(t)
e such that 0¥ /9t = x(t)v¥(x), and

X)) _ (5 V2 V)Y (@)
x (1) P (x)

e since the l.h.s. is only a function of £ and the r.h.s. is only a function of
ax, both must be equal to the same constant, E. Therefore,

ihx(t) = Ex(t)

(g VP V)(e) = Eip(a)

20

e The first equation can be integrated to give x () = xoexp(—t1Et/h)



Superposition states & time-dependent observables

e First, use the particular solution ¥(x,t) = ¥Yg(x)exp(—itEt/h) to
calculate time-dependent expectation values, e.g.,

(x), = / do O (z,t) z U (x, t) = / d % (@) B4/ @ () e B/
_ / dz " (2)2 Yu(x) ——= no time-dependence!

e Next, try a linear combination:

U(z,t) = aypp(z)exp(—iEt/h) + bypp/(x)exp(—iE't/h)

@ = laP [ do o lve@) + b [ do o |vm (@)

—|—2Re(a*b)/dw $¢E(m)¢E/(m)e_i(E’—E)t/h

The time dependence is in the interference term! “




Wavepackets = most general TDSE solutions

e As we have seen, a coherent superposition of eigenstates (= wavepacket)
is required in order to have time dependence in any observable

e The general solution of the TDSE thus reads as follows:
> )
U(x,t) = Z an, 'zpn(a:)exp<—EEnt) (discrete spectrum)
n=1
— where (Y, (), E,,) are obtained by solving the time-independent SE
— the a,,’s are obtained from the initial condition: a,, = [ dz ¢¥* () ¥ (x, 0)

e For a continuous spectrum, we get analogously:

VU(x,t) = / dE a(E)Yg(x) exp(—%Et) (continuous spectrum)
0
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Gaussian wavepacket in a harmonic potential
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e time-evolving wavepacket: R

5o/

T(@,t) = ) anen(@) eXp(—%hw(n +1/2)t) 9y A%?
e wavepacket at time £ = mT 0 ﬂ \/

where T = 27 /w is the classical period: \;/ Displacement
0 X

V(x,t =mT) = Z ApnPn(T) exp(—%hw(n + 1/2)mT>

= exp(—i2mm(n +1/2))¥(x,0) = (—1)"¥(x,0)

. . . . 23
e the wavepacket oscillates with the classical period T'!
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What do we need to calculate?

(1) Franck-Condon excitation & beyond:

e Franck-Condon wavepackets
e transition dipole moment, oscillator strength
e absorption spectra, nonlinear optical spectroscopy . . .

(2) PES’s from electronic structure calculations:

e calculate Potential Energy Surfaces (PES)
e calculate non-adiabatic couplings
e possibly “diabatize” (= transform to a diabatic representation)

(3) Dynamics (once the PES’s are known):

e wavepacket simulations on non-adiabatically coupled PES’s
e or simplified descriptions of the dynamics: classical trajectories, Gaussian

wavepackets
25



