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Topics

1. Photophysical Processes

3. Wavepackets

5. The Franck-Condon picture of electronic transitions

6. What do we measure experimentally?

2. The Born-Oppenheimer approximation

4. Beyond Born-Oppenheimer – non-adiabatic transitions

7. Conical intersections

8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

9. Some electronic structure aspects

10. Dynamics: trajectories or wavefunctions?

11. Wavefunction propagation techniques

2



12. Trajectory surface hopping techniques

13. Non-linear optical spectroscopy: calculation of spectroscopic signals

14. Extended systems: Excitons, light-harvesting, etc.

15. Solvent/environmental effects
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Starting point: the molecular Hamiltonian

all electrons and nuclei

Ĥ = T̂e + T̂N + V̂e + V̂N + V̂eN
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But we might eventually do classical molecular
dynamics (MD) simulations, e.g., for proteins

• Quantum classical transition due to decoherence
• Do any quantum effects survive?
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Of course the electrons always need a quantum
mechanical treatment. . .

. . . but they are usually integrated out so as to yield effective potentials
for the nuclear motion (Born-Oppenheimer approach)
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Two Steps

1 – Born-Oppenheimer approximation: separate the electronic and nuclear
motions and generate effective potentials for the nuclear motion

2 – follow the dynamics of the nuclei, either using quantum dynamics
(time-dependent Schrödinger equation) or else using classical dynamics
(Newton’s equations)(∗)

(∗) . . . or else using a variety
of semiclassical and “mixed”
quantum-classical approaches
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Step 1. The Born-Oppenheimer Approximation

Max Born Robert Oppenheimer

• Expansion in orders of the mass ratio m/M ∼ 1/1836
9



Step 2: calculate the dynamics of the nuclei

ih̄
∂Ψ

∂t
= (T̂ + V̂ )Ψ

or

q̇ =
p

m
ṗ = −∇V

In most biological applications, Newton’s equations are used!
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Molecular Potential Energy Surfaces (PES’s)

• simplest picture: bonding/non-bonding combinations of atomic orbitals

• account for the overall symmetry of the wavefunction
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Born-Oppenheimer – basics

Using the idea of an adiabatic separability of the time scales for electronic
vs. nuclear motion, separate the total Hamiltonian

ĤT = T̂e + V̂e + T̂N + V̂N + V̂eN

= T̂N + Ĥel

and solve the electronic Schrödinger equation first – disregarding T̂N :

Ĥelψn(rel|R) = εn(R)ψn(rel|R)

• The eigenvalues εn(R) depend parametrically on the nuclear
coordinate(s) and constitute the Born-Oppenheimer surfaces
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Born-Oppenheimer, cont’d

If we assume that the overall wavefunction (electronic + nuclear) can be
written as

ΨT (rel, R) = ψn(rel|R)χn(R)

we obtain nuclear motion in terms of the SE (or TDSE) for the nuclear
wavefunction χn(R, t) on the nth Born-Oppenheimer surface:

(
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• Thus we have separated the electronic-nuclear problem into two parts:

Ĥelψn(rel|R) = εn(R)ψn(rel|R) ; ih̄χ̇n =
(
T̂N + εn(R)

)
χn
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But something isn’t quite right...

• Born-Oppenheimer surfaces
for the I2 molecule

• note that in the BO picture,
the nuclei move only on a given
BO surface at a time

• thus, the multiple crossings of
the I2 potentials are indicative
of a breakdown of the BO
approximation
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What was wrong about our Born-Oppenheimer
derivation?

We have neglected that the nuclear kinetic energy operator can have non-
zero matrix elements between different electronic wavefunctions (since
these depend parametrically upon the nuclear coordinates):

〈ψ1(rel|R)|T̂N |ψ2(rel|R)〉χ2(R) 6= 0

This generates a coupling between different electronic states, and we
obtain “non-adiabatic” transitions if the states come energetically close
to each other. A more general wave function ansatz is therefore needed:

ΨT (rel, R) =
∑
n

ψn(rel|R)χn(R)
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The Group Born-Oppenheimer Approximation

• use the improved ansatz

ΨT (rel, R) =
∑
n

ψn(rel|R)χn(R)

• where ψn(rel|R) = solutions of the electronic Schrödinger Equation:
Ĥelψn(rel|R) = εn(R)ψn(rel|R)

• now integrate over the electronic coordinates and find that the nuclear
wavefunctions {χn(R)} are coupled to each other:(
−
h̄2

2M

∂2

∂R2
+ εn(R)

)
χn +

∑
m

Λ̂mnχm = Eχn

• where the non-adiabatic couplings are given as
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Non-adiabatic couplings

The non-adiabatic couplings are often re-written as follows:
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where Fmn = non-adiabatic derivative couplings

where Gmn = non-adiabatic scalar couplings
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Coupled BO surfaces: matrix notation
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coupling through nuclear kinetic energy!
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Non-adiabatic coupling at an “avoided crossing”

The non-adiabatic coupling becomes very large
at a so-called avoided crossing

This is because the character of the electronic
wavefunction changes very rapidly
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Wavepacket motion through an avoided crossing
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Polli et al., Nature 467, 440 (2010)

• example: isomerisation of retinal
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