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Topics

1. Photophysical Processes

3. Wavepackets

5. The Franck-Condon picture of electronic transitions

6. What do we measure experimentally?

2. The Born-Oppenheimer approximation

4. Beyond Born-Oppenheimer – non-adiabatic transitions

7. Conical intersections

8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

9. Some electronic structure aspects

10. Dynamics: trajectories or wavefunctions?

11. Wavefunction propagation techniques
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12. Trajectory surface hopping techniques

13. Non-linear optical spectroscopy: calculation of spectroscopic signals

14. Extended systems: Excitons, light-harvesting, etc.

15. Solvent/environmental effects
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Non-adiabatic wavepacket motion
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Polli et al., Nature 467, 440 (2010)

• example: isomerisation of retinal
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Coupled BO surfaces: matrix notation

ih̄
∂

∂t

 χ1(R, t)

χ2(R, t)

 =

 T̂N + ε1(R) Λ̂12(R)

Λ̂21(R) T̂N + ε2(R)


 χ1(R, t)

χ2(R, t)



=


 T̂N Λ̂12(R)

Λ̂21(R) T̂N

+

 ε1(R) 0

0 ε2(R)



 χ1(R, t)

χ2(R, t)



• non-diagonal representation of the nuclear kinetic energy operator
• diagonal representation of the potential operator (which follows from

the fact that the εn’s are eigenvalues of the electronic Schrödinger
Equation)
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Non-adiabatic coupling at an “avoided crossing”

The non-adiabatic coupling becomes very large
at a so-called avoided crossing

This is because the character of the electronic
wavefunction changes very rapidly
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“Diabatic” representation

• unitary transformation of electronic wavefunctions such that the kinetic
energy couplings (almost) vanish,

Φ
dia

(rel|R) = S(R)ψ
ad

(rel|R)

• in turn, a potential type coupling appears:

ih̄
∂

∂t

 χ̃1(R, t)

χ̃2(R, t)

 =

 T̂N + V dia
1 (R) V12(R)

V21(R) T̂N + V dia
2 (R)


 χ̃1(R, t)

χ̃2(R, t)



• in practice, one often prefers to work with a diabatic representation,
since the diabatic states have a well-defined electronic character, and the
calculation of derivative couplings is avoided
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Diabatic representation: matrix notation

ih̄
∂

∂t

 χ̃1(R, t)

χ̃2(R, t)

 =

 T̂N + V1(R) V12(R)

V21(R) T̂N + V2(R)


 χ̃1(R, t)

χ̃2(R, t)



=


 T̂N 0

0 T̂N

+

 V1(R) V12(R)

V21(R) V2(R)



 χ̃1(R, t)

χ̃2(R, t)



• diagonal representation of the nuclear kinetic energy operator

• non-diagonal representation of the potential (i.e., diabatic electronic
wavefunctions are not eigenfunctions of the electronic Hamiltonian!)

• if we diagonalize the diabatic potential matrix, we get the adiabatic
energies back
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Example: dissociation of NaI

(a) = covalent

(b) = ionic

• in this case, the dynamics is “almost” adiabatic on the upper BO surface10



Diabatic representations – some more detail

• Is it always possible to define the adiabatic-to-diabatic transformation?

ψdia(rel, R) = S(R)ψad(rel, R)

in such a way that the non-adiabatic (kinetic-energy) coupling Λ̂nm is
eliminated. Here,

Λ̂nm = −
h̄2

2M

(
Fnm

∂

∂R
+Gnm

)

Fnm = 〈ψad
m(rel, R)|

∂

∂R
ψ

ad
n (rel, R)〉 ; Gnm = 〈ψad

m(rel, R)|
∂2

∂R2
ψ

ad
n (rel, R)〉

Analysis shows that

• a strictly diabatic basis does not exist, except for special cases (diatomics,
“isolated 2-state system” in polyatomics)

Mead & Truhlar, J. Chem. Phys. 77, 6090 (1982)
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Quasi-diabatic representations

construct (non-unique) bases which approximately eliminate the Λ̂nm

• e.g., work with an “isolated two-state system assumption”

– argue that the divergent part of the derivative couplings originates in
the direct coupling between the two states

– in addition, only the lowest-order terms in a Taylor expansion around
the intersection cause the divergence

eliminate this dominant contribution

Thiel, Köppel, J. Chem. Phys. 110, 9371 (1999)

• in general: quasi-diabatic bases are smooth w.r.t. molecular properties
(e.g., dipole moments)

• for polar solvation problems: define charge-localized (“VB-type”) diabatic
states
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