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Topics

Photophysical Processes
Wavepackets

The Franck-Condon picture of electronic transitions

. What do we measure experimentally?

. The Born-Oppenheimer approximation

Beyond Born-Oppenheimer — non-adiabatic transitions
Conical intersections

Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

. Some electronic structure aspects

Dynamics: trajectories or wavefunctions?

. Wavefunction propagation techniques



12. Trajectory surface hopping techniques
13. Non-linear optical spectroscopy: calculation of spectroscopic signals
14. Extended systems: Excitons, light-harvesting, etc.

15. Solvent/environmental effects
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Non-adiabatic wavepacket motion
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e example: isomerisation of retinal



Coupled BO surfaces: matrix notation
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e non-diagonal representation of the nuclear kinetic energy operator

e diagonal representation of the potential operator (which follows from
the fact that the €,,’s are eigenvalues of the electronic Schrodinger

Equation)



Non-adiabatic coupling at an “avoided crossing”
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The non-adiabatic coupling becomes very large
at a so-called avoided crossing

This is because the character of the electronic
wavefunction changes very rapidly

Adiabatic energies

Non-adiabatic coupling

Nuclear displacement 7



“Diabatic” representation

e unitary transformation of electronic wavefunctions such that the kinetic
energy couplings (almost) vanish,

2 (ro| R) = S(R)Y™ (ral| R)

e in turn, a potential type coupling appears:
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e in practice, one often prefers to work with a diabatic representation,
since the diabatic states have a well-defined electronic character, and the
calculation of derivative couplings is avoided



Diabatic representation: matrix notation

5 ( X1(R, t) ) Tn + Vi(R)  Via(R) ( x1(R, t) )
th—
Ot \ fa(R,t) Vis(R)  Tn + Va(R) %2(R, t)

A

In O Vi(R) Via(R) x1(R, t)
= +
0 Tn ( Vai(R)  Va(R) ) ( x2(R, t) )

diagonal representation of the nuclear kinetic energy operator

non-diagonal representation of the potential (i.e., diabatic electronic
wavefunctions are not eigenfunctions of the electronic Hamiltonian!)

if we diagonalize the diabatic potential matrix, we get the adiabatic

energies back .



Example: dissociation of Nal
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e in this case, the dynamics is “almost” adiabatic on the upper BO surfacg

lonic



Diabatic representations — some more detail

e Is it always possible to define the adiabatic-to-diabatic transformation?

¢dia(rela R) — S(R)wad(rela R)

in such a way that the non-adiabatic (kinetic-energy) coupling A, is
eliminated. Here,
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Analysis shows that

e a strictly diabatic basis does not exist, except for special cases (diatomics,

“isolated 2-state system” in polyatomics) "

Mead & Truhlar, J. Chem. Phys. 77, 6090 (1982)



Quasi-diabatic representations

construct (non-unique) bases which approximately eliminate the Avm
e e.g., work with an “isolated two-state system assumption”

— argue that the divergent part of the derivative couplings originates in
the direct coupling between the two states

— in addition, only the lowest-order terms in a Taylor expansion around
the intersection cause the divergence

—— eliminate this dominant contribution

Thiel, Képpel, J. Chem. Phys. 110, 9371 (1999)

e in general: quasi-diabatic bases are smooth w.r.t. molecular properties
(e.g., dipole moments)

e for polar solvation problems: define charge-localized (“VB-type” ) diabatic

states
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