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Topics

1. Photophysical Processes

3. Wavepackets

5. The Franck-Condon picture of electronic transitions

6. What do we measure experimentally?

2. The Born-Oppenheimer approximation

4. Beyond Born-Oppenheimer – non-adiabatic transitions

7. Conical intersections

8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

9. Some electronic structure aspects

10. Dynamics: trajectories or wavefunctions?

11. Wavefunction propagation techniques
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12. Trajectory surface hopping techniques

13. Non-linear optical spectroscopy: calculation of spectroscopic signals

14. Extended systems: Excitons, light-harvesting, etc.

15. Solvent/environmental effects
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Curve Crossings – Basics

H
dia

= TN +

(
e1(x) δ

δ e2(x)

)
= TN +

(
e + κ(x− x0) δ

δ e− κ(x− x0)

)

−→ ε
ad
1/2(x) =

1

2
(e1(x) + e2(x))±

1

2
[(e2(x)− e1(x))

2
+ 4δ

2
]
1/2

If e1 = e2 = e0 −→ ε1/2 = e0 ± δ 6



Non-Crossing Rule & Avoided Crossings

Adiabatic potential surfaces of the same symmetry cannot cross in 1D

Take a diabatic potential:

Ĥ =

 T̂N + V1(R) V12(R)

V12(R) T̂N + V2(R)



Conditions for a crossing:

(1) V1(R)− V2(R)
∣∣∣
R=RX

= 0 (2) V12(R)
∣∣∣
R=RX

= 0

This is unlikely to happen in 1D, unless imposed by symmetry! 7



Non-Crossing Rule: More Detailed

1929: Eugene P. Wigner and John von Neumann:

Intersections of potential surfaces of the same symmetry (“same-symmetry
intersections”) have dimension N int − 2 where N int is the number of
internal degrees of freedom.

Equivalently, two internal coordinates must be varied to find an intersection
(if such an intersection exists at all).
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Crossings in Two Dimensions: Conical Intersections

S. Hahn and G. Stock, J. Phys. Chem. B 104, 1146 (2000).

• primary process of vision

• relevant coordinates: twist + skeletal stretch + . . .

• excited-state decay in the protein: ∼ 200 fs / in solution phase: ∼ 5 ps
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Conical intersections (CoIn’s)
as landmark topology

• Conical intersection topologies
are highly anharmonic

• Extreme breakdown of the
Born-Oppenheimer approximation

• The electronic decay at a CoIn is ultrafast
(femtosecond to picosecond scale)

• CoIn’s are ubiquitous (Truhlar/Mead:
“Principle of non-rareness of CoIn’s”)

• Polyatomic molecules; Jahn-Teller
effect in solids

CoIn =
photochemical
funnel

adapted from: Schultz et al., J. Am. Chem. Soc. 125, 8098 (2003)
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Retinal isomerisation, cont’d

temporal resolution with a broad spectral observation window.
Here we show that ultrafast optical spectroscopy with sub-20-fs
time resolution and spectral coverage from the visible to the
near-infrared allows us to follow the dynamics leading to the con-
ical intersection in rhodopsin isomerization. We track coherent
wave-packet motion from the photoexcited Franck–Condon
region to the photoproduct by monitoring the loss of reactant
emission and the subsequent appearance of photoproduct absorp-
tion, and find excellent agreement between the experimental obser-
vations and molecular dynamics calculations that involve a true
electronic state crossing. Taken together, these findings constitute
the most compelling evidence to date for the existence and

We initiated the photoisomerization reaction in the retinal chromo-
phore of purified rhodopsin by 10-fs 500-nm pump pulses resonant
with the ground-state absorption. The photoinduced dynamics were
then probed by delayed ultra-broadband few-optical-cycle probe
pulses, either in the visible wavelength region (500–720 nm) or in
the near-infrared (NIR, 820–1,020 nm), generated by synchronized

20 fs
over the entire monitored spectral range. Figure 1a presents a differ-

) map as a function of probe wavelength and
pump–probe time delay. Immediately following excitation from the

), we observed a
signal (blue in the figure) with maximum intensity at
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signal (blue in the figure) with maximum intensity at
650 nm, which is assigned to stimulated emission from the excited

state due to the negligible ground-state absorption in this wavelength
range. The stimulated emission signal rapidly shifts to the red while
losing intensity and disappearing to wavelengths longer than 1,000 nm

signal changes sign and trans-
forms into a weak photoinduced absorption signal (red in the figure),
which initially appears at 1,000 nmand then gradually shifts to the blue

Figure 1 | Wave-packet dynamics through the rhodopsin conical
intersection. a, c, Experimental (a) and simulated (c) differential transmission
(DT/T) map as a function of time delay and wavelength in the visible and NIR
spectral regions. The white area in the experimental data around 750 nm
corresponds to the ‘blind region’ of our set-up. Grey lines are guides to the eye,
highlighting the temporal shifts of the stimulated emission (blue) and
photoinduced absorption (red/orange) signals. b, d, Experimental (b) and
simulated (d) DT/T dynamics at selected probe wavelengths.

Polli et al., Nature 467, 440 (2010)
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CoIn’s – diabatic picture

VCoIn(xt, xc) =

V0(xt, xc) +

 κ(1) ∆xt λ∆xc

λ∆xc κ(2) ∆xt



∆xt = xt − x0
t tuning mode

∆xc = xc − x0
c coupling mode

2 dimensions: CoIn point
3 dimensions: CoIn seam
N dimensions: (N-2) dimensional

intersection space

(∗)here, diabatic linear vibronic coupling
(LVC) form
(∗)can be embedded in a correct
representation of the overall potential via
regularized diabatic states

xcouplingxtuning

V
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CoIn’s – adiabatic picture

gradient difference vector: g = 1/2(〈ψad
1 |∇Ĥel|ψad

1 〉 − 〈ψad
2 |∇Ĥel|ψad

2 〉)
non-adiabatic coupling vector: h = 〈ψad

1 |∇Ĥel|ψad
2 〉

NB.: Connection to derivative couplings:

〈ψad
1 |∇|ψ

ad
2 〉 =

〈ψad
1 |∇Ĥel|ψad

2 〉
V2(R)− V1(R)

=
h

V2(R)− V1(R)
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CoIn’s – adiabatic vs. diabatic

Eadiabatic = U
T
VdiabaticU ; Vdiabatic = V0 +

 V11 V12

V12 V22

 = V0 +


∑
i κ

(1)
i xi

∑
i λixi∑

i λixi
∑
i κ

(2)
i xi



• two intrinsic modes (X−, XΛ) along which the degeneracy is lifted, where
X− =

∑
i(κ

(1)
i − κ

(2)
i )xi and XΛ =

∑
i λixi

• these are directly related to the adiabatic g and h vectors 14



Classification of conical intersections

by symmetry: “accidental symmetry-allowed intersections” vs. “accidental
same-symmetry intersections”

by topology: “peaked” vs. “sloped”

Note that an ultrafast decay to the lower state is not always guaranteed!
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