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Topics

1. Photophysical Processes

3. Wavepackets

5. The Franck-Condon picture of electronic transitions

6. What do we measure experimentally?

2. The Born-Oppenheimer approximation

4. Beyond Born-Oppenheimer – non-adiabatic transitions

7. Conical intersections

8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

9. Some electronic structure & dynamics aspects

10. More on dynamics: trajectories or wavefunctions?

11. Wavefunction propagation techniques
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12. Trajectory surface hopping techniques

13. Non-linear optical spectroscopy: calculation of spectroscopic signals

14. Extended systems: Excitons, light-harvesting, etc.

15. Solvent/environmental effects
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Some Comments: Electronic Structure &
Dynamics Methods

(1) Potential Energy Surfaces (PES): From QM to QM/MM to MM

(2) Dynamics: From Quantum to Classical

(3) “Direct Dynamics” (“on-the-fly” Electronic Structure)
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Electronic structure for excited states:
Post-Hartree-Fock approaches needed!

• Hartree-Fock method: Slater determinant (“antisymmetrized product”)
• yields ground-state electronic wavefunction
• single-configurational approach
• correlations not treated adequately

for electronically excited states:

• correlated wavefunctions
• multi-configurational approaches needed
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Hartree-Fock method

Starting point: e.g., Schrödinger equation for N electrons, 1 nucleus:

HΨ = EΨ
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Ψ is given as a Slater determinant (this is an assumption!):

Ψ(1, 2, . . . N) =
1
√
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Hartree-Fock equations

The Hartree-Fock equation is an effective 1-particle Schrödinger equation
for the “optimal” spin orbitals φs(1):

{
h(1)(1) + veff(1)

}
φs(1) = εsφs(1)

veff(1) =

N∑
r=1

Jr(1)−Kr(1)

• due to the structure of the operators Jr and Kr, the HF equation for
φs depends on all spin orbitals φr (r = 1, . . . , N)!

• F = h(1) + veff is denoted Fock operator
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Coulomb and exchange operators

Mean-field operators Jr und Kr:
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Eigenvalues and eigenfunctions of the
Hartree-Fock equation: occupied vs. virtual orbitals

{
h(1)(1) + veff(1)

}
φn(1) = εnφn(1)

εn{n = 1, . . . , N}
= occupied spin orbitals
(N = number of electrons)

εn{n = N, . . .}
= unoccupied (“virtual”) spin orbitals
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Excited States: Post-Hartree-Fock Methods –
expensive!

• variational methods

– Configuration Interaction = CI
– Multiconfigurational methods:

Multiconfiguration Self-Consistent Field (MCSCF), Complete-Active-
Space Self-Consistent Field (CASSCF)

– Multi-reference methods (e.g., MRCI)

• Coupled-Cluster Approaches

– e.g., CC2 = 2nd-order CC
– EOM-CCSD = Equation of Motion-CC-Singles-Doubles

• Time-Dependent Density Functional Theory (TD-DFT)
– very popular . . . but handle with care!
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TD-DFT – Some remarks

Time dependent Kohn-Sham Equations:(
−

1

2
∇2 + vs(r, t)

)
φi(r, t) = i

∂

∂t
φi(r, t)

with the effective potential

vs(r, t) = vext(r, t) + vJ(r, t) + vxc(r, t)

where vxc(r, t) = vxc[ρ(r, t)] = exchange correlation functional

time-dependent density: ρ(r, t) =
∑N
i=1 |φi(r, t)|2

• however, TD-DFT uses a perturbative Linear Response (LR) version of
the above equations!
• problems: many approximate functionals, charge transfer described

incorrectly (−→ long-range corrections . . . ) 12



Configuration Interaction (CI)

|Ψ〉 = |Ψ0〉+
∑
J

CJ |ΨJ〉

• |Ψ0〉 = (N !)−1/2|ψi(1)ψj(2) . . . ψn(N)| = HF Slater determinant

• |ΨJ〉 = excited Slater determinants (i.e., with excitations to virtual
orbitals)

• calculate coefficients CJ variationally ( secular equation)

• here, each determinant contains MO’s whose AO coefficients are fixed:
ψi(1) =

∑
n cinφn(1)
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Configuration Interaction (CI)

  

Generate excited Slater determinants by promoting up to N 
electrons from the N/2 occupied to M-N/2 virtuals:
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CISD

E.g., CISD = Configuration Interaction (CI) with Singles and
Doubles

NB. Single excitations (“singles”) do not mix with the Hartree-
Fock ground state: Brillouin’s Theorem

This is why a substantial improvement will result from double
excitations (“doubles”)
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Multiconfiguration Self-Consistent Field (MCSCF)

|Ψ〉 = |Ψ0〉+
∑
J

CJ |ΨJ〉

• formally the same wavefunction ansatz as in the CI approach

• |ΨJ〉 = (N !)−1/2|ψi(1)ψj(2) . . . ψn(N)| = Slater determinant

• But differently from CI: AO coefficients of MO’s, ψi(1) =
∑
n cinφn(1),

are now also optimized!

• i.e., both the CJ ’s and the cin’s are re-calculated
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Complete Active Space Self-Consistent Field
(CASSCF)

• excitations within an “active space”

• generally highest occupied and lowest unoccupied orbitals

• within the CAS space: full CI
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Coupled Cluster (CC) Approach

Development of the wavefunction in terms of a “Cluster Operator”:

Ψ = eCΨ0

= (1 + C +
1

2
C2 +

1

3!
C3 + . . .)Ψ0

Here, C is the sum of k-electron excitation operators:

C = C1 + C2 + C3 + . . .

• C generates k-th order excited determinants

• C ' C1 + C2: CCSD (Coupled Cluster Singles Doubles)

• C ' C1 + C2 + C3: CCSDT (Coupled Cluster Singles Doubles Triples) 18



QM/MM: Quantum Mechanics/Molecular
Mechanics hybrid approach

• 2013 Nobel Prize for Martin Karplus/Michael Levitt/Arieh Warshel
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MM: Force Fields

typical force fields:

Vbond(r) =
1
2

k(r− r0)
2

Vangular(φ) =
1
2
(1+ cos(mφ −δ ))2

VvdW(rij) =
C12

r12
ij
− C6

r6
ij

dihedral angle

nonbonded interaction
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QM/MM, cont’d

Ĥ = ĤQM + ĤQM/MM + ĤMM

ĤQM/MM = −
electrons∑

i

MM atoms∑
j

Qj

rij
+

nuclei∑
i

MM atoms∑
j

(ZiQj
Rij

+
{Aij
R12
ij

−
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R6
ij

})
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∑
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[Aij
R12
ij

−
Bij

R6
ij

+
qiqj

Rij

]
+
∑
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Kb(R−R0)
2 + . . .
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Some Comments: Electronic Structure &
Dynamics Methods

(1) Potential Energy Surfaces (PES): From QM to QM/MM to MM

(2) Dynamics: From Quantum to Classical

(3) “Direct Dynamics” (“on-the-fly” Electronic Structure)
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Hierarchy of approaches

• quantum dynamics (that’s the only accurate approach!)

• mean-field (Ehrenfest) approach

• surface hopping approach

• Landau-Zener transitions: simple semiclassical picture
(“back of the envelope” approach)
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Quantum dynamics – basics

• The time evolution of a non-stationary state (wavepacket) Ψ(x, t) is
given in terms of the time-dependent Schrödinger equation (TDSE):

ih̄
∂Ψ

∂t
= ĤΨ =

(
−
h̄2

2m

∂2

∂x2
+ V (x)

)
Ψ

• Particular solution, for eigenstates:

Ψn(x, t) = ϕn(x)exp
(
−
i

h̄
Ent

)
• wavepackets are coherent superpositions of such eigenstate solutions

• Examples which allow for analytical solutions: particle-in-a-box, free
particle wavepacket, Gaussian wavepackets

• In general, we need to integrate the TDSE numerically 24



Light-induced wavepacket dynamics

• laser excitation leads to a “vertical” transition (i.e., nuclear geometry
unchanged)
• thus, a wavepacket is created that is a coherent superposition of

vibrational eigenstates, ψ(x, t = 0) =
∑
n cnϕn(x).
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Vibronic wavepackets

• In a femtosecond optical experiment, vibrational wavepackets are
created in the electronically excited state |E〉,

χ0(x, t)|G〉
hν

χ0(x, t)|E〉 =
∑
n

cnϕ
E
n(x)exp(−

iEnt

h̄
)|E〉

where ϕEn(x) are the vibrational eigenstates of the excited-state BO-
surface

• Due to the non-adiabatic (“non-Born-Oppenheimer”) coupling between
|E〉 and |G〉, these wavepackets can evolve into coherent superpositions
involving both electronic states (“vibronic wavepackets”):

|ψ(x, t)〉 =
∑
n

cnϕ
E
n(x)exp(−

iEEn t

h̄
)|E〉+

∑
n

dnϕ
G
n (x)exp(−

iEGn t

h̄
)|G〉
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Mean-Field (Ehrenfest) Approach
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• classical trajectory motion on a mean (averaged) potential surface
Eeff(R) = |a1(R)|2E1 + |a2(R)|2E2
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Surface hopping approach

picture: M. Barbatti

• the electronic wavefunction is propagated coherently:

ih̄ψ̇ = (H0 +H(r,Rj(t)))ψ

• the trajectories Rj(t) move classically on the kth surface until they
perform a stochastic “hop” to another surface `, with probability Tk→`28



Surface hopping – some more details

• propagation of the quantum (electronic) wavefunction coefficients in
the adiabatic representation, for the jth trajectory:

Ċ
(j)
k = −iC(j)

k ω
(j)
k −

∑
`

C
(j)
` Q̇(j)G

(j)
k`

where G
(j)
k` is the nonadiabatic coupling vector, Gk` = 〈ψk|∂/∂Q|ψ`〉

• the hopping probability is evaluated as follows (“fewest switches”
algorithm by Tully):

T
(j)
k` = max

{
0,
B

(j)
kl

p
(j)
k

∆t
}

where B
(j)
kl = 2Re(ρ

(j)
`kG

(j)
k` )Q̇(j), ρ

(j)
`k = C

(j)
k C

∗(j)
` , pk = C

(j)
k C

∗(j)
k

• consistency problem: one should have p̄k(t) = Πk(t), where

p̄k = (1/NT )
∑
j p

(j)
k and Πk(t) = Nk(t)/NT
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Landau-Zener transition probabilities

P = exp
(
−
πγLZ

2

)
γLZ =

∆2

h̄v|F2 − F1|

v = particle velocity ; Fi = potential slope ; ∆ = energy gap

P = transition probability between adiabatic states
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Interpretation via repeated Landau-Zener crossings

• “almost” classical picture

• the curve crossing event is treated semiclassically
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Wavepackets on coupled potential surfaces: NaI

NaI∗ −→ Na + I

(Zewail & co (1989))

• many oscillations between
covalent and ionic states

32



Some Comments: Electronic Structure &
Dynamics Methods

(1) Potential Energy Surfaces (PES): From QM to QM/MM to MM

(2) Dynamics: From Quantum to Classical

(3) “Direct Dynamics” (“on-the-fly” Electronic Structure)
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“On-the-fly” calculations

• “on-the-fly” electronic structure calculations, moving with a trajectory

• rectilinear coordinates

• calculate Gradients & Hessian

• on-the-fly adiabatic PES – but possibly diabatic dynamics

Lasorne, Robb, Worth, PCCP 9, 3210 (2007), Worth, Robb, Burghardt, Faraday Discuss. 127, 307 (2004)
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