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Topics

1. Photophysical Processes

2. The Born-Oppenheimer approximation

3. Wavepackets

4. Beyond Born-Oppenheimer – non-adiabatic transitions

5. The Franck-Condon picture of electronic transitions

6. Interaction with light & what kind of spectroscopies?

7. Conical intersections

8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

9. Some electronic structure aspects

10. Dynamics: trajectories or wavefunctions?

11. Wavefunction propagation techniques
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12. Trajectory surface hopping techniques

13. Non-linear optical spectroscopy: calculation of spectroscopic signals

14. Extended systems: Excitons, light-harvesting, etc.

15. Solvent/environmental effects
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What do we need to calculate?

(1) PES’s from electronic structure calculations:

• calculate Potential Energy Surfaces (PES)
• calculate non-adiabatic couplings
• possibly “diabatize” (= transform to a diabatic representation)

(2) Dynamics (once the PES’s are known):

• wavepacket simulations on non-adiabatically coupled PES’s
• or simplified descriptions of the dynamics: classical trajectories, Gaussian

wavepackets

(3) Spectroscopic signals:

• Franck-Condon wavepackets
• transition dipole moment, oscillator strength
• absorption spectra, nonlinear optical spectroscopy . . .
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Interaction with the electromagnetic field

Ĥ = Ĥmol + Ĥint(t)

• semiclassical equations for the interaction with the field:

Ĥint(t) = −E(r, t)µ̂ = −E(r, t)
∑
α

µ̂α = −E(r, t)
∑
α

qαr̂α

“back-of-the-envelope” derivation:

electromagnetic field E [N C−1] = force per unit charge

e.g., force Fx for a field in x direction: Fx =
∑
α qαEx = −(dV/dx)

hence, the potential of interaction reads V = −
∑
α qαxEx = −

∑
α µαEx
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In general: Measure polarisation resulting from the
interaction with an electromagnetic field

P = P (1) + P (2) + P (3) + . . . = ε0

(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
χ(n) = nth order susceptibility
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Absorption spectrum (“1st-Order Polarization”)

σ(ωI) =
4π2ωI

3h̄c

∑
n

|〈ψEn |µ|ψ
G
i 〉|

2δ(ωI − ωn)
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Fermi’s Golden Rule

Transition probability between quantum states that are subject to a perturbation

Ĥ(t) = Ĥ0 + V̂ (t)

e.g., V̂ (t) = −µ̂ E0 (eiωt + e−iωt) “perturbation”

Transition rate between two states a→ b
(in 2nd order perturbation theory):

Γa→b =
2π

h̄
|〈ψ(0)

b |µ̂|ψ
(0)
a 〉|

2 δ(E0
b − E

0
a ± h̄ω)

where E0
b − E0

a = h̄ωba - resonance condition! 8



Perturbation Theory – Brief Primer

Ĥ = Ĥ0 + λV̂

Ĥ0 = unperturbed Hamiltonian

V̂ = perturbation Hamiltonian

λ = small parameter

Now expand

ψn = ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . .

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . .

and insert into the Schrödinger Equation Ĥψn = Enψn . . .
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Perturbation Theory – Brief Primer, cont’d

. . . and insert into the Schrödinger Equation Ĥψn = Enψn:

(Ĥ0 + λV̂ )(ψ(0)
n + λψ(1)

n + . . .)

= (E(0)
n + λE(1)

n + λ2E(2)
n + . . .)(ψ(0)

n + λψ(1)
n + . . .)

Finally, sort according to contributions in λ0, λ1, λ2:

(λ0) . . . Ĥ0ψ
(0)
n = E(0)

n ψ
(0)
n

(λ1) . . . Ĥ0ψ
(1)
n + V̂ ψ(0)

n = E(0)
n ψ

(1)
n + E(1)

n ψ
(0)
n

(λ2) . . . Ĥ0ψ
(2)
n + V̂ ψ(1)

n = E(0)
n ψ

(2)
n + E(1)

n ψ
(1)
n + E(2)

n ψ
(2)
n

and obtain first-, second-order energies and wavefunctions . . . 10



Second-Order Perturbation Theory
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Transition dipole moment & oscillator strength

transition dipole moment:

〈ψEn |µ|ψ
G
i 〉 ∼ µEG〈ψn|ψi〉

with the electronic matrix element µEG = 〈E|µ̂|G〉 and the Franck-
Condon factors Sni = 〈ψn|ψi〉

oscillator strength:

(dimensionless quantity which measures the total area under the absorption band σ(ωI) =
4π2ωI

3h̄c

∑
n |〈ψn|µ|ψi〉|

2δ(ωI − ωn)):

f =
(4πmeωEG

3e2h̄

)
|µEG|2 12



Dipole allowed and forbidden transitions

(a) carbonyl (C=O) group:
π∗← n transition is forbidden

n ∼ O2py
ψπ∗ = c′χ(C2px) + cχ(O2px)

〈π∗|µ|n〉 ∼ c〈Opx|µ|Opy〉 = 0

but: intensity borrowing possible

(b) ethene:
π∗← π transition is allowed

transition to π∗ induces twisting
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Another case: Benzene (D6h)

three important bands in the UV:
185 nm – symmetry-allowed, intense
200 nm – symmetry-forbidden, weak
260 nm – symmetry-forbidden, weak

ground state: G(1A1g)

electric dipole operator:
A2u(z) + E1u(x, y)

allowed transitions:
E1u← 1A1g (185 nm)
1A2u← 1A1g

forbidden (but weak) transitions:
1B1u← 1A1g (200 nm)
1B2u← 1A1g (260 nm)
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PYP chromophore

eration depend on the chromophore’s environment. The n and

nPhMOs essentially correspond to lone pairs, with the n orbital

relating to the carbonyl oxygen lone pair with a contribution

from the 3p atomic orbitals of sulfur, while the nPh orbital

corresponds to the lone pair of the phenolic oxygen.

The results presented in the diagram were obtained throughout

from CC2 calculations. For pCTM, pCTM-, and complex I,

we also carried out EOM-CCSD calculations. This allowed us

to assess the quality of the CC2 method in describing the excited

states under consideration. A comparison of the CC2 and EOM-

CCSD data obtained for those three systems shows that the CC2

method correctly describes the π-π1
/

, π-π2
/

, n-π1
/

, and

π-Arg52 excited states, with deviations from the EOM-CCSD

energies that are not larger than about 0.3 eV for the π-π1
/

and

π-π2
/

states, 0.1 eV for the n-π1
/

state, and 0.4 eV for the

π-Arg52 state. The EOM-CCSD energies are always higher

than the CC2 values (explicit values of the excitation energies

under consideration can be found in table SM2 of the Supporting

Information).

The nPh-π1
/

excited state is a particular case: Here, the CC2

method was found to substantially underestimate the excitation

energy, with a deviation of about 1 eV from the EOM-CCSD

result. A possible reason for this poor agreement is the more

complicated electronic structure of the nPh-π1
/

state and, in

particular, the somewhat higher weight of doubly excited

Table 1. CC2 Calculated Properties for the π-π1
/

, π-π2
/

, n-π1
/

, nPh-π1
/

, and π-Arg52 Excited States in the Different Chromophore +

Amino Acid(s) Supermolecular Complexes: Oscillator Strengths, f (au); Change in the Permanent Dipole Moment under Transition to the
Excited State, |∆µb| (Debye)

π−π1
/

π−π2
/ n−π1

/ nPh−π1
/

π−Arg52

molecular system/complex f |∆µb| f |∆µb| f |∆µb| f |∆µb| f |∆µb|

pCTM 0.867 5.8 0.099 0.7 0.011 5.6
pCTM- 0.995 7.5 0.056 0.6 <10-3 5.7 0.015 14.7

I pCTM- + Arg52 0.759 8.6 <10-3 14.1 0.053 18.6
II I + Cys69 0.924 6.9 0.003 14.9 0.107 17.8
III I + Phe62 + Phe96 0.338 12.7 <10-3 13.9 0.052 18.2
IV I + Thr50 + Val66 + Tyr98 0.559 10.9 0.347 12.5
V I + Tyr42 + Glu46 1.074 11.0
VI IV + Tyr42 + Glu46 1.012 11.2
VII VI + Cys69 1.073 11.6

Figure 3. (a-e) Patterns of the principal highest occupied and lowest
unoccupied (virtual) molecular orbitals of the deprotonated chromophore
(pCTM-); (f) pattern of the lowest unoccupied molecular orbital of complex

I (pCTM- + Arg52). Note that the orbital patterns of the π and π1
/

orbitals
differ from those of the neutral chromophore (see Figure 1 of ref 18). In

particular, the π1
/

orbital is no longer localized on the double bond
conjugated with the aromatic ring.

Electronic Structure of the PYP Chromophore A R T I C L E S
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Time-domain representation: Franck-Condon
wavepacket

excited-state wavepacket: |φi(0)〉 = µba|ψi(0)〉
16



Franck-Condon transition – wavepacket picture
po

te
nt

ia
l

molecular coordinate

∧

hν

ground-state wavefunction:

|ψ(0)(x, t0)〉 = χ
(0)
G (x, t0)|G〉

act with the dipole moment operator on ψ(0):

µ̂|ψ(0)〉 = µEG(|E〉〈G|+ |G〉〈E|)|ψ(0)〉

= µEG χ
(0)
G (x, t0)|E〉

≡ |φE(x, t0)〉 (1)

|φE(x, t)〉 = excited-state wavepacket

non-stationary state!
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Absorption spectrum: frequency and time-domain
representation

σ(ωI) =
4π2ωI

3h̄c

∑
n

|〈ψEn |µ̂|ψ
G
0 〉|

2δ(ωI − ωn)

=
2πωI

3h̄c

∫ ∞
−∞

dt 〈φE(0)|φE(t)〉eiωt

excited-state wavepacket: |φE(0)〉 = µ̂|ψG0 〉

autocorrelation function: C(t) = 〈φE(0)|φE(t)〉

The Fourier transform of 〈φE(0)|φE(t)〉 yields the absorption spectrum18



Translate Fermi’s Golden Rule rate to
time-dependent picture

use Fourier transform relation

δ(ω − ωn) =
1

2π

∫ ∞
−∞

dt ei(ω−ωn)t

such that

σ =
4π2ωI

3h̄c

1

2π

∫ ∞
−∞

dt
∑
n

ei(ω−ωn)t〈ψG0 |µ̂|ψ
E
n 〉〈ψ

E
n |µ̂|ψ

G
0 〉

=
2πωI

3h̄c

∫ ∞
−∞

dt
∑
n

eiωt〈ψG0 |µ̂|e
−iωntψEn 〉Sn0

=
2πωI

3h̄c

∫ ∞
−∞

dt eiωt〈φE(0)|φE(t)〉
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Time-frequency correspondence

• recurrences of the autocorrelation function generate the vibrational fine
structure of the spectrum!
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Emission spectra

• emission spectrum: very similar description – but distinguish stimulated
vs. spontaneous emission: Einstein coefficients Asp

fi = (8πhν3
fi/c

3)Bst
fi

• emission spectrum is red-shifted as compared to absorption
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Second-Order Processes

second-order perturbation theory:

Ĥ = Ĥ0 + λV̂

(Ĥ0 + λV̂ )(|ψ(0)〉+ λ|ψ(1)〉+ . . .)

= (E(0)
n + λE(1)

n + λ(2)E(2)
n + . . .)(|ψ(0)〉+ λ|ψ(1)〉+ . . .)
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Two-Photon Absorption (TPA)

• TPA is quadratically proportional to the intensity of the incident light
• localized excitation in a small volume: useful for materials & biosystems!
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Raman Spectroscopy

(“Inelastic Scattering of a photon by a molecule”)
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Raman Spectroscopy
(Off-resonant Raman Scattering)

Kramers-Heisenberg-Dirac (2nd order perturbation) theory:

Iab(ω) =
∣∣∣∑
m

〈χb|µ̂|m〉〈m|µ̂|χa〉
Ea + h̄ω − Em + iε

∣∣∣2
=

∣∣∣∑
m

〈φb|m〉〈m|φa〉
Ea + h̄ω − Em + iε

∣∣∣2
=

∣∣∣∫ ∞
0

dt eiωt〈φb|φa(t)〉
∣∣∣2

= |〈φb|Raω〉|
2

Raω = “Raman wave function” Lee, Heller, J. Chem. Phys. 71, 4777 (1979)

Iab(ω) relates to polarizability!
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