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Topics

1. Photophysical Processes

3. Wavepackets

5. The Franck-Condon picture of electronic transitions

6. What do we measure experimentally?

2. The Born-Oppenheimer approximation

4. Beyond Born-Oppenheimer – non-adiabatic transitions

7. Conical intersections

8. Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene

9. Dynamics: trajectories or wavefunctions?

10. Some electronic structure aspects

11. Wavefunction propagation techniques
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12. Trajectory surface hopping techniques

13. Non-linear optical spectroscopy: calculation of spectroscopic signals

14. Extended systems: Excitons, light-harvesting, etc.

15. Solvent/environmental effects
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How to calculate the dynamics of the nuclei?

ih̄
∂Ψ

∂t
= (T̂ + V̂ )Ψ

or

q̇ =
p

m
ṗ = −∇V

In many molecular applications Newton’s equations work fine . . .
. . . but photochemistry requires wavepacket dynamics!
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When is quantum dynamics needed?

• depending on the nuclear mass, the classical limit (action S � h̄) may
not be reached

• tunneling effects

• correct description of zero-point energy

• resolution of vibrational fine structure

• wavepacket motion

• nonadiabatic dynamics: nuclear-electronic (“vibronic”) coupling effects
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Quantum dynamics – recap

• The time evolution of a non-stationary state (wavepacket) Ψ(x, t) is
given in terms of the time-dependent Schrödinger equation (TDSE):

ih̄
∂Ψ

∂t
= ĤΨ =

(
−
h̄2

2m

∂2

∂x2
+ V (x)

)
Ψ

• Particular solution, for eigenstates:

Ψn(x, t) = ϕn(x)exp
(
−
i

h̄
Ent

)
• wavepackets are coherent superpositions of such eigenstate solutions

• Examples which allow for analytical solutions: particle-in-a-box, free
particle wavepacket, Gaussian wavepackets

• In general, we need to integrate the TDSE numerically 6



Exercise

(1) Use the particular solution

Ψ(x, t) = ψn(x)exp(−iEnt/h̄)

of the time-dependent Schrödinger equation, where ψn(x) is assumed to be an

eigenfunction of the Hamiltonian, to calculate the expectation value of an observable Ô

(i.e., any observable is allowed!). Is the expectation value 〈Ô〉 time-dependent?

(2) Next, try a linear combination (i.e., a minimal wavepacket):

Ψ(x, t) = cnψn(x)exp(−iEnt/h̄) + cn′ ψn′(x)exp(−iEn′t/h̄)

and verify whether the expectation value 〈Ô〉 is time-dependent. Interpret the difference

between the results of (1) and (2).
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Light-induced wavepacket dynamics

• laser excitation leads to a “vertical” transition (i.e., nuclear geometry
unchanged)
• thus, a wavepacket is created that is a coherent superposition of

vibrational eigenstates, ψ(x, t = 0) =
∑
n cnϕn(x).
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Wavepackets – recap

• In a femtosecond optical experiment, vibrational wavepackets are
created in the electronically excited state |E〉,

χ0(x, t)|G〉
hν

χ0(x, t)|E〉 =
∑
n

cnϕ
E
n(x)exp(−

iEnt

h̄
)|E〉

where ϕEn(x) are the vibrational eigenstates of the excited-state BO-
surface

• Due to the non-adiabatic (“non-Born-Oppenheimer”) coupling between
|E〉 and |G〉, these wavepackets can evolve into coherent superpositions
involving both electronic states (“vibronic wavepackets”):

|ψ(x, t)〉 =
∑
n

cnϕ
E
n(x)exp(−

iEEn t

h̄
)|E〉+

∑
n

dnϕ
G
n (x)exp(−

iEGn t

h̄
)|G〉
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Nonadiabatic wavepacket dynamics

S. Hahn and G. Stock, J. Phys. Chem. B 104, 1146 (2000).

• here, retinal isomerisation: primary process of vision

• relevant coordinates: twist + skeletal stretch + . . .

• excited-state decay in the protein: ∼ 200 fs / in solution phase: ∼ 5 ps
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Gaussian Wavepackets (GWP’s) = phase-space
points + quantum uncertainty

• casting quantum dynamics in terms of point-like trajectories is generally
difficult

• describing quantum dynamics in terms of “semi-localized” objects is
preferable Gaussian wavepackets

ψ(x|qp) = exp
(
−α(x− q)2 +

i

h̄
p(x− q) +

i

h̄
γ
)

such that 〈ψ|x̂|ψ〉 = q and 〈ψ|p̂|ψ〉 = p.
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Special case: “coherent state” (CS)

ψ(x|qp) = exp
(
−αCS(x− q)2 +

i

h̄
p(x− q) +

i

h̄
γ
)

; αCS = mω/2h̄

• displaced HO ground state – constant width!

• alternative notation: “|z〉” states:

z =
1
√

2

(
ζ1/2q + i

1

h̄1/2ζ1/2
p
)

〈x|z〉 =
(ζ
π

)
exp

(
−
ζ

2
(x− q)2 +

i

h̄
p(x− q) +

ipq

2h̄

)
• “generalized phase-space points” which occupy an “irreducible”

phase space area given by the uncertainty product ∆x∆p = h̄/2
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How do GWP’s move?

• Ĥ = −
h̄2

2m

∂2

∂x2
+

1

2
kx2 k = mω2

• time-evolving wavepacket:

Ψ(x, t) =
∑
n

anϕn(x) exp
(
−
i

h̄
h̄ω(n+ 1/2)t

)
• wavepacket at time t = mT
where T = 2π/ω is the classical period:

Ψ(x, t = mT ) =
∑
n

anϕn(x) exp
(
−
i

h̄
h̄ω(n+ 1/2)mT

)
= exp(−i2πm(n+ 1/2))Ψ(x, 0) = (−1)mΨ(x, 0)

• the wavepacket oscillates with the classical period T
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GWP’s follow a classical path
(Heller 1975)

ψ(x, t) = exp

(
−αt(x− qt)2

+
i

h̄
pt(x− qt) +

i

h̄
γt

)

Λ(t) = {qt, pt, αt, γt}

q̇t = pt/m

ṗt = −
(
∂V (x)

∂x

)
x=qt

α̇t = −
2ih̄

m
αt

2 −
i

2h̄

(
∂2V (x)

∂x2

)
x=qt

γ̇t = −
h̄2αt

m
+
p2
t

2m
− V ≡ −

h̄2αt

m
+ Lcl

time-dependent parameters

• center position and momentum evolve classically: Ehrenfest’s theorem

• width parameter: relates to wavepacket spreading (linear stability)

• phase parameter: relates to the classical action S =
∫
dt Lcl

• equations are exact for a harmonic potential; for a general potential,
they follow from a variational principle + local harmonic approximation 14



Wavepackets spread with time

• free particle:

∆x(t) = 1/2
√

(1 + h̄2α2
0t

2/m2)/α0

• (an)harmonic oscillator:
width spreads and contracts periodically
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Except for coherent states, which don’t spread!

CS’s = displaced ground state GWP’s
with minimum uncertainty

photograph: John Klauder

〈x|z〉 =

(
ζ

π

)
exp

(
−
ζ

2
(x− q)

2
+
i

h̄
p(x− q) +

ipq

2h̄

)
ζ = mω/h̄

= e
−|z|2/2

∞∑
n=0

1
√
n!
z
n|ψn〉 z =

1
√

2

(
ζ

1/2
q + i

1

h̄1/2ζ1/2
p

)
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Some analytical results

• free particle GWP: explicit time dependence

• GWP in a harmonic potential

• CS’s are minimum uncertainty wavepackets
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Free particle GWP: explicit time dependence

• initial condition: ψ(x, 0) = Ae−α0x
2

A = (2Re(α0)/π)1/4

• expand in free-particle states and obtain time dependence:

ψ(x, 0) =

∫ ∞
−∞

dk a(k)eikx ψ(x, t) =

∫ ∞
−∞

dk a(k)eikx−i
h̄k2

2m t

• coefficients are given as

a(k) =
1

2π

∫ ∞
−∞

dxψ(x, 0)e−ikx =
A

2π

√
π

α0

e−k
2/4α0

• integrate to obtain

ψ(x, t) =
A√

1 + 2ih̄α0t
m

e
−x2/( 1

α0
+2ih̄t
m )

again a Gaussian state!
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Another way of obtaining the free-particle solution

• assume that the state remains Gaussian and use the ansatz:

ψ(x, t) = exp

(
−αt(x− qt)2

+
i

h̄
pt(x− qt) +

i

h̄
γt

)

• insert into the time-dependent Schrödinger equation

• obtain equations of motion for the parameters:

ih̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
q̇t =

pt

m

ṗt = 0

α̇t = −
2ih̄

m
α

2
t

γ̇t = −
p2
t

2m
+ ptq̇t −

h̄2αt

m

• integrate equations of motion, to obtain the same result as before 19



GWP’s & CS’s in a harmonic potential

• follow the same procedure as before, i.e., Gaussian ansatz

• obtain equations of motion for the parameters:

ih̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
+

1

2
mω

2
x

2
q̇t =

pt

m

ṗt = −mω2
q

2
t

α̇t = −
2ih̄

m
α

2
t +

i

2h̄
mω

2

γ̇t =
p2
t

2m
−

1

2
mω

2
q

2
t −

h̄2αt

m
≡ Lcl −

h̄2αt

m

• identify special condition for which the width matrix does not change:

if αt =
mω

2h̄
then α̇t = 0 coherent state
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CS’s are minimum uncertainty wavepackets

• calculate uncertainty product ∆x∆p for a general Gaussian:

∆x =
√
〈x̂2〉 − 〈x̂〉2 =

√
1

4Reα

∆p =
√
〈p̂2〉 − 〈p̂〉2 =

(
2h̄

2
α−

h̄2α2

Reα

)1/2

=
h̄|α|
√

Reα

∆x∆p =
h̄

2

|α|
Reα

• for real and positive α: minimum uncertainty product:

∆x∆p =
h̄

2

• for the free particle wavepacket:

∆x(t)∆p(t) =
h̄

2

√
1 +

4h̄2α2
0t

2

m2
≥
h̄

2 21



Numerical solution of the TDSE

ih̄
∂Ψ

∂t
= (T̂ + V̂ )Ψ

concept: expand Ψ in a basis set
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Basis Sets – Static or Time-Dependent

(illustration by D. Shalashilin)
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High-dimensional quantum simulations

• standard wavepacket propagation: not beyond ∼5 degrees of freedom

• mean-field methods: very efficient but not accurate enough

• multiconfigurational mean-field methods: significant improvement –
accurate quantum dynamics for ∼100 degrees of freedom (and up to
∼1000 degrees of freedom or more for “multi-layer” approaches!)
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Standard wavepacket propagation methods

Ψ(r1, . . . , rf ; t) =
∑N1
j1=1 . . .

∑Nf
jf=1 Cj1...jf (t)

∏f
κ=1 θ

(κ)
jκ

(rκ)

=
∑
J CJ(t)ΘJ

where the θ
(κ)
jκ

are time-independent basis functions, e.g., localized DVR
(discrete variable representation) functions, with 〈θj|x̂j|θl〉 = xjδjl

iĊJ =
∑
LHJLCL with HJL = 〈ΘJ|H|ΘL〉

solve via split-operator, Chebyshev, Lanczos etc. integrators

exponential scaling of numerical effort ∼ fNf+1

Hence, up to 5–6 degrees of freedom feasible
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Mean-field approximation: time-dependent Hartree

Ψ(r1, . . . , rf ; t) = c(t)
∏f
κ=1 φκ(rκ, t)

i.e., separable form use constraint: 〈φκ|φ̇κ〉 = 0

iċ = 〈H〉 c

iφ̇κ =

(
Ĥ(κ) − 〈H〉

)
φκ evolution in the κth subspace

with 〈H〉 = 〈φ1 . . . φf|H|φ1 . . . φf〉

and Ĥ
(κ)

= 〈φ1 . . . φκ−1φκ+1 . . . φf|H|φ1 . . . φκ−1φκ+1 . . . φf〉

time-dependent mean-field Hamiltonian

Linear scaling of numerical effort many degrees of freedom! 26



Multi-Configuration Time-Dependent Hartree
(MCTDH)

Meyer, Manthe, Cederbaum, Chem. Phys. Lett. 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)

• multiconfigurational expansion of the wavefunction

Ψ(r, t) =
∑
J

AJ(t)ΦJ(r, t) =
∑
j1

. . .
∑
jN

Aj1...jN
(t)

N∏
κ=1

ϕ
(κ)
jκ

(rκ, t)

• time-dependent configurations ΦJ / single-particle functions (spf) ϕjκ

• use the Dirac-Frenkel variational principle 〈δΨ|H − i∂t|Ψ〉 = 0:

coefficients: iȦJ =
∑
L

〈ΦJ|H|ΦL〉AL

spf’s : iϕ̇
(κ)

=

(
1̂− P̂ (κ)

)[
ρ

(κ)
]−1

Ĥ
(κ)
ϕ

(κ)

• for large systems, use combined modes, i.e., multidimensional ϕ(κ)’s
27



“Mixed quantum-classical” approaches

• Mean-field (Ehrenfest) approach

• Surface Hopping approach

• Many variants of these two approaches
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Mean-field (Ehrenfest) approach

• the classical subsystem moves on an average potential due to the
quantum subsystem:

MR̈ = Fcl + FMF

FMF = −∇R〈ψ|H(r,R)|ψ〉

• the quantum subsystem evolves under the time-dependent Hamiltonian
H(r,R(t)):

ih̄ψ̇ = (H0 +H(r,R(t)))ψ

• state-specific evolution of the classical subsystem, and quantum-classical
correlations, are not correctly accounted for
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Surface hopping approach

picture: M. Barbatti

• the electronic wavefunction is propagated coherently:

ih̄ψ̇ = (H0 +H(r,Rj(t)))ψ

• the trajectories Rj(t) move classically on the kth surface until they
perform a stochastic “hop” to another surface `, with probability Tk→`30



Surface hopping – some more details

• propagation of the quantum (electronic) wavefunction coefficients in
the adiabatic representation, for the jth trajectory:

Ċ
(j)
k = −iC(j)

k ω
(j)
k −

∑
`

C
(j)
` Q̇(j)G

(j)
k`

where G
(j)
k` is the nonadiabatic coupling vector, Gk` = 〈ψk|∂/∂Q|ψ`〉

• the hopping probability is evaluated as follows (“fewest switches”
algorithm by Tully):

T
(j)
k` = max

{
0,
B

(j)
kl

p
(j)
k

∆t
}

where B
(j)
kl = 2Re(ρ

(j)
`kG

(j)
k` )Q̇(j), ρ

(j)
`k = C

(j)
k C

∗(j)
` , pk = C

(j)
k C

∗(j)
k

• consistency problem: one should have p̄k(t) = Πk(t), where

p̄k = (1/NT )
∑
j p

(j)
k and Πk(t) = Nk(t)/NT
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(De-)coherence problem

• both in the mean-field (Ehrenfest) and surface hopping scheme, the
evolution of the quantum subsystem is “too coherent”, since the
quantum mechanical (wavepacket) nature of the nuclei is not accounted
for

• in the case of surface hopping, introduce corrections which make
the wavefunction collapse onto one or the other state – so-called
decoherence corrections

• other problems: zero-point energy, tunneling . . .
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What exactly is coherence?

• wavefunction picture: coherent superposition states, say for TLS

|Ψ(t)〉 = c1|φ1〉exp

(
−
i

h̄
E1t

)
+ c2|φ2〉exp

(
−
i

h̄
E2t

)

• this translates as follows to the density operator picture:

ρ̂(t) = |Ψ(t)〉〈Ψ(t)| =
∑
i,j=1,2

cic
∗
j exp

(
−
i

h̄
(Ei − Ej)t

)
|φi〉〈φj|

≡
∑
i,j=1,2

ρij(t)|φi〉〈φj|

i = j: populations, i 6= j: coherences

• now include vibrations and/or ensemble average:
ρ̂ =

∑
n pn|Ψn(t)〉〈Ψn(t)| dephasing (“T2”, “decoherence”)
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How coherence gets lost

|ψ(t)〉 = c0|0〉|φ0(t)〉+ c1|1〉|φ1(t)〉

ρ̂(t) = |ψ(t)〉〈ψ(t)|

time-evolving coherence:

ρ01(t) = Tr{|0〉〈1|ρ̂(t)}
= 〈1|ρ̂(t)|0〉
= c∗1c0〈φ1(t)|φ0(t)〉

• coherence ∝ overlap of nuclear wavefunctions

• loss of coherence cannot be captured by a classical trajectory picture

picture: P. Rossky et al.
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“Cat states” and decoherence

superposition of two wavepackets

+ “bath” of (60) harmonic oscillators

off-diagonal : coherence

←→
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0.5
z’ [a.u.]

0

0.1

t=380 fs
(B)

-0.5
0

0.5
z [a.u.]

-0.5
0

0.5
z’ [a.u.]

0

0.1

Burghardt, Nest, Worth,

J. Chem. Phys. 119, 5364 (2003)
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Coherent superpositions & measurement process

|Ψcat〉 = 1/
√

2
(
|alive〉+ |dead〉

)

• the measurement picks up one or the other eigenstate, |alive〉 or |dead〉

• the measurement changes the system: projection onto the corresponding
eigenstate – “wavefunction collapse”, “reduction of the wavepacket”
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