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Topics

Photophysical Processes

. Wavepackets
. The Franck-Condon picture of electronic transitions
. What do we measure experimentally?

. The Born-Oppenheimer approximation

Beyond Born-Oppenheimer — non-adiabatic transitions

. Conical intersections

Examples: Ethene, Protonated Schiff Bases (Retinal), Azobenzene
Dynamics: trajectories or wavefunctions?

Some electronic structure aspects

. Wavefunction propagation techniques



12. Trajectory surface hopping techniques
13. Non-linear optical spectroscopy: calculation of spectroscopic signals
14. Extended systems: Excitons, light-harvesting, etc.

15. Solvent/environmental effects



How to calculate the dynamics of the nuclei?
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In many molecular applications Newton’s equations work fine . . .
. . . but photochemistry requires wavepacket dynamics!



When is quantum dynamics needed?

depending on the nuclear mass, the classical limit (action S > h) may
not be reached

tunneling effects

correct description of zero-point energy
resolution of vibrational fine structure
wavepacket motion

nonadiabatic dynamics: nuclear-electronic (“vibronic”) coupling effects



Quantum dynamics — recap

e The time evolution of a non-stationary state (wavepacket) ¥(x,t) is
given in terms of the time-dependent Schrodinger equation (TDSE):
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e Particular solution, for eigenstates:
)
v, (x,t) = cpn(a:)exp(—EEnt)

e wavepackets are coherent superpositions of such eigenstate solutions

e Examples which allow for analytical solutions: particle-in-a-box, free
particle wavepacket, Gaussian wavepackets

e In general, we need to integrate the TDSE numerically 6



Exercise

(1) Use the particular solution

V(x,t) = Yn(x)exp(—iE,t/h)

of the time-dependent Schrodinger equation, where ),(x) is assumed to be an
eigenfunction of the Hamiltonian, to calculate the expectation value of an observable O
(i.e., any observable is allowed!). Is the expectation value (O) time-dependent?

(2) Next, try a linear combination (i.e., a minimal wavepacket):

V(x,t) = cp Yn(x)exp(—iE t/h) + ¢,y Y, (x)exp(—iE,/t/h)

and verify whether the expectation value (O) is time-dependent. Interpret the difference
between the results of (1) and (2).



Light-induced wavepacket dynamics

wavepacket motion
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e laser excitation leads to a “vertical” transition (i.e., nuclear geometry

unchanged)
e thus, a wavepacket is created that is a coherent superposition of

vibrational eigenstates, {(z,t = 0) = ) cppn(x). 8



Wavepackets — recap

e In a femtosecond optical experiment, vibrational wavepackets are
created in the electronically excited state |E),

1Bt

Xo(T, )|G)  —~  xo(z,t)|E) =D cnpf

where pZ(x) are the vibrational eigenstates of the excited-state BO-
surface

e Due to the non-adiabatic (“non-Born-Oppenheimer”) coupling between
|E) and |G), these wavepackets can evolve into coherent superpositions
involving both electronic states (“vibronic wavepackets”):
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Nonadiabatic wavepacket dynamics

trans

S. Hahn and G. Stock, J. Phys. Chem. B 104, 1146 (2000).

e here, retinal isomerisation: primary process of vision

e relevant coordinates: twist + skeletal stretch + . ..
10

e excited-state decay in the protein: ~ 200 fs / in solution phase: ~ 5 ps



Gaussian Wavepackets (GWP’s) = phase-space
points + quantum uncertainty

e casting quantum dynamics in terms of point-like trajectories is generally
difficult

e describing quantum dynamics in terms of “semi-localized” objects is
preferable —— Gaussian wavepackets

o) = ov(ate 0+ ote 01+ 1)

such that (¢ |&[¢) = g and (P[p|y) = p.
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Special case: “coherent state” (CS)

) )
Y(zlgp) = eXP(—acs(fL’ — (I)2 + EP(«’L‘ —q) + E’)’) ;  acs = mw/2h

e displaced HO ground state — constant width!

e alternative notation: “|z)” states: %

1/, 1
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z = ﬁ(c q+zh1/2cl/2p)

(@z) = (%)GXP(_E(”’ —q)" + %p(w —q) + Z—h)

e “generalized phase-space points” which occupy an “irreducible”
12
phase space area given by the uncertainty product AxAp = h/2



How do GWP’s move?
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e time-evolving wavepacket: = //\V/K
) W f)k AP
W(x,t) = Z AP () exp(—ﬁhw(n + 1/2)t) | \\;’k

e wavepacket at time t = mT 0 M \/

where T = 27 /w is the classical period: \;/ Displacement
o
)
V(x,t =mT) = Zn: AP () exp(—ﬁhw(n + 1/2)mT)
= exp(—i2mm(n +1/2))¥(x,0) = (—1)"¥(x,0)

e the wavepacket oscillates with the classical period T



GWP'’s follow a classical path
(Heller 1975)
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e center position and momentum evolve classically: Ehrenfest’s theorem

e width parameter: relates to wavepacket spreading (linear stability)
e phase parameter: relates to the classical action S = [ dt L

e equations are exact for a harmonic potential; for a general potential,
they follow from a variational principle + local harmonic approximation ,



Wavepackets spread with time

/\/\
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o free particle:

Ax(t) = 1/21/(1 + R2a3t2/m?) /aq

e (an)harmonic oscillator:
width spreads and contracts periodically
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Except for coherent states, which don’t spread!

CS’s = displaced ground state GWP’s
with minimum uncertainty

(2l2) = (%)exp(—%w — @+ ipe -+ 2L) = mw/n
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Some analytical results

e free particle GWP: explicit time dependence
e GWP in a harmonic potential

e CS’s are minimum uncertainty wavepackets

17



Free particle GWP: explicit time dependence

2

initial condition: 1 (x,0) = Ae~ 0% A = (2Re(ay) /)4

expand in free-particle states and obtain time dependence:

¢($, 0) = /°° dk a(k)eikw qp(w’t) — /oo dk a(k)eik""_ig—ﬁft

— 00 — OO

coefficients are given as

1 [°° : A
a(k) = 2—/ dxip(x,0)e ** = — | T e—F*/4a0
™ J_oo 27T (8 7))

integrate to obtain

¢ 0

m

again a Gaussian state!

Y(x,t) =

18



Another way of obtaining the free-particle solution

e assume that the state remains Gaussian and use the ansatz:

P(x, t) = exp(—at(m —qi)" + }%pt(w —qi) + %‘Yt)

e insert into the time-dependent Schrodinger equation

e obtain equations of motion for the parameters:
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e integrate equations of motion, to obtain the same result as before
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GWP’s & CS’s in a harmonic potential

e follow the same procedure as before, i.e., Gaussian ansatz

e obtain equations of motion for the parameters:
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CS’s are minimum uncertainty wavepackets

e calculate uncertainty product AxAp for a general Gaussian:

1
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e for real and positive a: minimum uncertainty product:

h

e for the free particle wavepacket:
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Ax(t)Ap(t) = %\/14—



Numerical solution of the TDSE

h— = (T + V)W
thor =T +V)

concept: expand W in a basis set

22
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Basis Sets — Static or Time-Dependent

(b)
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(illustration by D. Shalashilin)

(@)
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High-dimensional quantum simulations

e standard wavepacket propagation: not beyond ~5 degrees of freedom
e mean-field methods: very efficient but not accurate enough

e multiconfigurational mean-field methods: significant improvement —
accurate quantum dynamics for ~100 degrees of freedom (and up to
~1000 degrees of freedom or more for “multi-layer” approaches!)

24



Standard wavepacket propagation methods

N N K
T(rs,.oorpt) = S5 300 Chp(#) T 657 ()
= 2.;C5(1)0,

where the 9;-:’) are time-independent basis functions, e.g., localized DVR
(discrete variable representation) functions, with (0;|Z;|0;) = x;0;

ié’J = ZL HJLCL with HJL = (@JlHl@L>

— solve via split-operator, Chebyshev, Lanczos etc. integrators

exponential scaling of numerical effort ~ foJr1

— Hence, up to 5—6 degrees of freedom feasible 25



Mean-field approximation: time-dependent Hartree

U(r1y...,rpst) = c(t) 1, dn(re,t)

i.e., separable form use constraint: (¢.|p.) = 0

ie = (H) ¢
id. = (ﬁ(&) — (H>> Pr evolution in the xth subspace

with (H) = (¢p1...05|H|p1...Dy)
and I:I(n) = <¢1 o o ¢n—1¢n—|—1 LRI ¢f|H|¢1 ° oo ¢n—1¢n—|—1 o d)f)

time-dependent mean-field Hamiltonian

Linear scaling of numerical effort — many degrees of freedom!



Multi-Configuration Time-Dependent Hartree
(MCTDH)

Meyer, Manthe, Cederbaum, Chem. Phys. Lett. 165, 73 (1990), Beck et al., Phys. Rep. 324, 1 (2000)

e multiconfigurational expansion of the wavefunction

T(r,t) = > Ajt)@y(r,t) = Z e Z Ajyin@® TT 0% (s, t)

e time-dependent configurations ®; / single-particle functions (spf) ;.

e use the Dirac-Frenkel variational principle (0W|H — i9:|¥) = 0:

coefficients: 'LAJ = Z(‘I)JlHl(I)L>AL
L

.. “1 . (s
spf’s . ?:L;O(n) — <1 _ P(H')> [p(m)] H( )(P(n)

27
o for large systems, use combined modes, i.e., multidimensional ¢(*)’s



“Mixed quantum-classical” approaches

e Mean-field (Ehrenfest) approach
e Surface Hopping approach

e Many variants of these two approaches

28



Mean-field (Ehrenfest) approach

e the classical subsystem moves on an average potential due to the
quantum subsystem:

MR = F,+ Fur
Fyr = —Vge@|H(r, R)|Y)

e the quantum subsystem evolves under the time-dependent Hamiltonian
H(r,R(1)):

iht) = (Ho + H(r, R(t)))

e state-specific evolution of the classical subsystem, and quantum-classical
correlations, are not correctly accounted for

29



Surface hopping approach

Surface hopping propagation

Reaction coordinate

picture: M. Barbatti

e the electronic wavefunction is propagated coherently:
ihap = (Ho + H(r, R;(t)))9

e the trajectories R;(t) move classically on the kth surface until they
perform a stochastic “hop” to another surface ¢, with probability T;._3p



Surface hopping — some more details

e propagation of the quantum (electronic) wavefunction coefficients in
the adiabatic representation, for the jth trajectory:

C(J) — _zc(ﬂ)w(ﬂ) Zc(J)Q(J)G(J)
where G/(é?e) is the nonadlabatlc coupling vector, Gy = {(Vg|0/0Q|1y)

e the hopping probability is evaluated as follows (“fewest switches”

algorithm by Tully):

(J)
- B
T,g‘? — max{ (kl) At}
Dy

where Bl(cal) _ 2Re(pgc)Gg£))Q.(-7), ch) _ C’(CJ)C;"(J)’ D = C’(cJ)CZ(J)

e consistency problem: one should have pg(t) =1IIk(t), where
pr = (1/Nr) ;py’ and Tx(t) = Ni(t)/Nr

31



(De-)coherence problem

e both in the mean-field (Ehrenfest) and surface hopping scheme, the
evolution of the quantum subsystem is “too coherent”, since the
quantum mechanical (wavepacket) nature of the nuclei is not accounted
for

e in the case of surface hopping, introduce corrections which make
the wavefunction collapse onto one or the other state — so-called
decoherence corrections

e other problems: zero-point energy, tunneling . ..

32



What exactly is coherence?

e wavefunction picture: coherent superposition states, say for TLS

2 3
|‘I’(t)> = cl|¢1)exp<—EE1t> -I- 02|¢2>6Xp(—EE2t>
e this translates as follows to the density operator picture:

p) = VO] = X cicjexn(— 1 (B~ Byt ) 6y

i,5=1,2

D pij(t)| i) (5]

1,7=1,2

1 = j: populations, ¢ # j: coherences

e now include vibrations and/or ensemble average:
p=> Pn|Pn(t))(¥,(t)| — dephasing (“TI>”, “decoherence”)

33



How coherence gets lost

¢,(0)
[4(2)) = ¢0[0)[@o(t)) + c1[1)|P1(2)) Ny 9,(V)
9,(0)

p(t) = [¥(1)) (¥ (t)]

_ _ \ 1

time-evolving coherence:

poi1(t) = Tr{|0)(1]p(¢)} ,‘M
= (1]a(t)[0)

= cico(P1(t)|po(t)) 0

picture: P. Rossky et al.
e coherence  overlap of nuclear wavefunctions

e loss of coherence cannot be captured by a classical trajectory picture
34
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“Cat states”’ and decoherence

superposition of two wavepackets

“bath” of (60) harmonic oscillators

0.1
Burghardt, Nest, Worth,

J. Chem. Phys. 119, 5364 (2003)

-0.5 0

z[a.u]

0.5

off-diagonal : coherence
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Coherent superpositions & measurement process

Wens) = 1/v2 (|a|ive> n |dead>)

uyu

state

———Jp» Observer

Superposed

A

i i

e the measurement picks up one or the other eigenstate, |alive) or |dead)

e the measurement changes the system: projection onto the corresponding
eigenstate — “wavefunction collapse”, “reduction of the wavepacket”
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