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Topics

1. Photophysical Processes

3. Wavepackets

5. The Franck-Condon picture of electronic transitions

6. What do we measure experimentally?

2. The Born-Oppenheimer approximation

4. Beyond Born-Oppenheimer – non-adiabatic transitions

7. Conical intersections

8. Some electronic structure & dynamics aspects

9. Examples: Ethene, PSBs, PYP

10. More on dynamics: trajectories or wavefunctions?

11. Wavefunction propagation techniques
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12. Trajectory surface hopping techniques

13. Non-linear optical spectroscopy: calculation of spectroscopic signals

14. Extended systems: Excitons, light-harvesting, etc.

15. Solvent/environmental effects
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Question: Do we really need the N -electron
wavefunction to determine the ground-state

energy?

Postulate: The ground-state energy can be uniquely derived
from the 1-electron density ρ(r), i.e.,

EGZ = EGZ[ρ(r)]

Proof: Hohenberg/Kohn Theorems (1964)
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1-electron density

ρcharge(r) = −eρ(r) = electron density (charge density) in space
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Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his develop-
ment of the density functional theory.

Walter Kohn receiving his Nobel Prize from His
Majesty the King at the Stockholm Concert

Hall.

The Nobel Prize medal.
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The Density Functional Theory was introduced in two seminal papers in the 60’s:

1. Hohenberg-Kohn (1964): ∼ 4000 citations

2. Kohn-Sham (1965): ∼ 9000 citations

The following figure shows the number of publications where the phrase“density functional
theory”appears in the title or abstract (taken from the ISI Web of Science).
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Molecular structures: DFT gives the bond lengths of a large set of molecules with a precision
of 1-2%. The hybrid functionals have improved the LDA results.

Bond lengths for different bonding situations [Å]:

Bond LDA BLYP BP86 Experiment
H-H RH−H 0.765 0.748 0.752 0.741

H3C-CH3 RC−C 1.510 1.542 1.535 1.526
RC−H 1.101 1.100 1.102 1.088

HC≡CH RC−C 1.203 1.209 1.210 1.203
RC−H 1.073 1.068 1.072 1.061

Vibrational frequencies: DFT predicts the vibrational frequencies of a broad range of molecules

within 5-10% accuracy.

Vibrational frequencies of a set of 122 molecules: method, rms deviations, proportion outside a
10% error range and listings of problematic cases (taken from Scott and Radom, 1996).

Method RMS 10% Problematic cases (deviations larger than 100 cm−1)
BP86 41 6 142(H2), 115(HF), 106(F2)
B3LYP 34 6 132(HF), 125(F2), 121(H2)
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N -electron wavefunction vs. 1-electron density

• N -electron wavefunction: ψN(x1, x2, . . . , xN)
where xi ≡ (ri, ωi), i.e., space and spin coordinates

• N -electron probability distribution:

ρN(x1, x2, . . . , xN) = |ψN(x1, x2, . . . , xN)|2

• 1-electron probability distribution:

ρ1(x1) = N
∫
dx2 . . . dxN ρN(x1, x2, . . . , xN)

(normalization such that
∫
dx1 ρ1(x1) = N)

• since electrons are indistinguishable:

ρ(x) ≡ ρ1(x1)
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Additional step: integrate out spin

ρ1(r1) =
∫
dω1ρ1(r1, ω1)

= N
∫
dω1dx2 . . . dxN ρN(x1, x2, . . . , xN)

purely spatial 1-electron density ρ1(r1)

(normalization such that
∫
dx1 ρ1(r1) = N)
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Simple test: HF ground state energy

Can we rewrite the HF ground state energy as a function(al)
of the 1-electron density?

〈ψHF
N |Ĥ|ψ

HF
N 〉 = EGZ[ρHF(r)] ?!
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N -electron wavefunction vs. 1-electron density:
Slater determinants

ψN(1, 2, . . . , N) =
( 1

N !

)1/2

|φa(1)φb(2) . . . φz(N)|

1-electron density:

ρ(x) =

z∑
m=a

φ∗m(x)φm(x)

Sum over all occupied spin orbitals
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Can we re-write the HF ground state energy as a
function(al) of the 1-electron density?

EGZ[ψHF
N ] = 〈ψHF

N |Ĥ|ψ
HF
N 〉

= 〈Te〉+ 〈VeN〉+
1

2

(
〈V Jee〉 − 〈V

K
ee 〉
)

with

〈Te〉 = −
N∑
n=1

h̄2

2me

〈φn|∇2|φn〉

〈VeN〉 = −
N∑
n=1

K∑
k=1

Ze2

4πε0

〈φn|
1

r1k

|φn〉

〈V Jee〉 =

N∑
n=1

N∑
m=1

e2

4πε0

〈φn|Jm|φn〉 〈V Kee 〉 =

N∑
n=1

N∑
m=1

e2

4πε0

〈φn|Km|φn〉
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NB. Overall energy vs. HF orbital energies

EGZ[ψHF
N ] = 〈ψHF

N |Ĥ|ψ
HF
N 〉

= 〈Te〉+ 〈VeN〉+
1

2

(
〈V Jee〉 − 〈V

K
ee 〉
)

=

N∑
n=1

εn −
1

2

(
〈V Jee〉 − 〈V

K
ee 〉
)

where εn = orbital energy = eigenvalue of the Fock operator:

εn = 〈φn|Fn|φn〉 = hn +

N∑
m=1

e2

4πε0

(
〈φn|Jm|φn〉 − 〈φn|Km|φn〉

)
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Can we re-write the HF ground state energy as a
function(al) of the 1-electron density?

Consider individual matrix elements:

• electron-nuclear interaction:

〈VeN〉 = −
∑
n

∑
k

Ze2

4πε0

〈φn|
1

r1k

|φn〉 = −
Ze2

4πε0

∑
k

∫
dx1

ρ(x1)

r1k

• electron-electron Coulomb interaction:

〈V Jee〉 =
∑
n

∑
m

e2

4πε0

〈φn|Jm|φn〉 =
e2

4πε0

∫
dx1

∫
dx2

ρ(x1)ρ(x2)

r12
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HF energy as function of the 1-electron density:
exchange interaction and kinetic energy

Consider individual matrix elements:

• electron-electron exchange interaction:

〈V Kee 〉 =
∑
n

∑
m

e2

4πε0

〈φn|Km|φn〉6=
e2

4πε0

∫
dx1

∫
dx2

P̂12ρ(x1)ρ(x2)

r12

• kinetic energy:

〈T 〉 = −
∑
n

h̄2

2me

〈φn|∇2|φn〉6= −
h̄2

2me

∫
dx1∇2ρ(x1)

Problem: both operators are non-local!
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But: Hohenberg-Kohn theorems

• the ground state energy (and all other ground state
properties) can be uniquely derived from the 1-electron
density:

EGZ = EGZ[ρ(x)]

• the exact ground state density can be determined
variationally:

δEGZ

δρ(x)
= 0 Etest ≥ Eexakt

≡ Density Functional Theory (DFT)
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Hohenberg-Kohn theorems

HK theorem 1:

The 1-particle density ρ(r) is uniquely determined by the
external potential Vext(r).

(Here, the so-called external potential Vext(r) corresponds to the electron-

nuclear interaction as well as “genuine” external fields, e.g., a laser field)
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Hohenberg-Kohn theorems

HK theorem 2:

The ground state energy can be written uniquely as a
functional of the 1-particle density: EGZ[ρ(r)].

The exact ground state energy is defined by the minimum of
this functional:

δEGZ

δρ(r)

∣∣∣
ρ(r)=ρexakt(r)

= 0
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Hohenberg-Kohn-Theoreme

HK-Theorem 1:

The 1-particle density ρ(r) is uniquely determined by the
external potential Vext(r).

Proof:

Let’s assume that two different external potentials V
(1)

ext (r) and V
(2)

ext (r)

generate the same 1-particle density ρ(r).

We further assume that the eigenfunctions are known:

H1ψ1 = (H0 + V
(1)

ext )ψ1 = E1ψ1

H2ψ2 = (H0 + V
(2)

ext )ψ2 = E2ψ2. 21



Proof / HK-Theorem 1 – cont’d

From this results:

E1 = 〈ψ1|H1|ψ1〉 < 〈ψ2|H1|ψ2〉
= 〈ψ2|H2|ψ2〉+ 〈ψ2|H1 −H2|ψ2〉

= E2 + 〈ψ2|V (1)
ext − V

(2)
ext |ψ2〉

= E2 +

∫
dr ρ2(V

(1)
ext − V

(2)
ext )

At the same time we have (by exchanging indices):

E2 = 〈ψ2|H2|ψ2〉 < E1 +

∫
dr ρ1(V

(2)
ext − V

(1)
ext )

Therefore:

E1 + E2 < E1 + E2 reductio ad absurdum 22



What does the functional EGZ[ρ] look like?

EGZ[ρ] = T [ρ] + VeN [ρ] + V Jee[ρ] + V XCee [ρ]

where

VeN [ρ] = −
Ze2

4πε0

∑
K

∫
dx1

ρ(x1)

r1K

V Jee[ρ] =
e2

4πε0

∫
dx1

∫
dx2

ρ(x1)ρ(x2)

r12

• by contrast, T [ρ] and V XCee [ρ] are unknown to start with!

• “XC”: exchange (X) plus correlation (C)!
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Thomas-Fermi-Dirac model —
Local Density Approximation (LDA)

• simplest model: Density looks locally like a uniform electron
gas

T [ρ] =
3

10
(3π2)2/3

∫
dx ρ5/3(x) ; V XCee [ρ] = −

3

4
(
3

π
)1/3

∫
dx ρ4/3(x)

• analytical result, but quite inaccurate for the description of
molecules
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Kohn-Sham (KS)-Ansatz

• solution for T [ρ]: back to an orbital representation (“Kohn-
Sham orbitals”)

• solution for V XCee [ρ]: exchange-correlation functional – many
variants!
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Kohn-Sham (KS)-Ansatz

• construct a Slater determinant for a hypothetical non-

interacting system which has the same density as the real
system:

ρ(r1) = N
∫
dω1dx2 . . . dxN ρ

KS
N (x1, x2, . . . , xN)

ρKSN (x1, x2, . . . , xN) = |ψKSN (x1, x2, . . . , xN)|2

ψKSN =
( 1

N !

)1/2

|φKSa (1)φKSb (2) . . . φKSz (N)|

ρKS(x) =
∑z
m=aφ

KS∗
m (x)φKSm (x)

ρKS(r) =
∫
dω1ρ

KS(x)
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Kohn-Sham (KS)-Ansatz

• Since the density is now defined via Kohn-Sham orbitals

φKSm , we obtain a variational set-up that’s very similar to
Hartree-Fock!

• effective Hamiltonian:(
h1 +

1

4πε0

∫
dx2

ρ(x2)

r12

+ VXC(x1)
)
φKSm (x1) = εKSm φKSm (x1)

• very similar concept to the Fock operator! Major difference:
no exchange integrals, but rather exchange-correlation
functional
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Exchange-correlation (XC) functionals

• besides the density (ρ), functionals can depend on the gradient of the
density (∇ρ as well as the second derivative (∇2ρ)

• functionals can contain an admixture of the Hartree-Fock exchange
term (“HF exchange”): hybrid functionals
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Exchange-correlation (XC) functionals, cont’d

• e.g., Lee-Yang-Parr (LYP):

• the Becke-3-parameter-Lee-Yang-Parr (B3LYP) functional is one of the
most successful density functionals 29



KS-SCF procedure

• solution by a self-consistent field approach (just like
Roothaan-Hall SCF)

• DFT methods can scale more advantageously than Hartree-
Fock (N3

basis instead of N4
basis)
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Exact solution of the el. Schrödinger equation

32



Hartree-Fock solution
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KS-DFT
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DFT – Pro’s & Con’s

Advantages:

• variational equations
• obtain electron correlations with the effort of Hartree-Fock
• good performance for bond energies and molecular geometries
• more efficient than Hartree-Fock, with the same accuracy

Disadvantages:

• “trial & error” with a large number of functionals
• no systematic way to increase accuracy
• only suitable for ground state
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TD-DFT for excited states

Time dependent Kohn-Sham Equations:(
−

1

2
∇2 + vs(r, t)

)
φi(r, t) = i

∂

∂t
φi(r, t)

with the effective potential

vs(r, t) = vext(r, t) + vJ(r, t) + vxc(r, t)

where vxc(r, t) = vxc[ρ(r, t)] = exchange correlation functional

time-dependent density: ρ(r, t) =
∑N
i=1 |φi(r, t)|2

• however, TD-DFT uses a perturbative Linear Response (LR) version of
the above equations!
• problems: many approximate functionals, charge transfer described

incorrectly (−→ long-range corrections . . . ) 37


